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Dedication

Avinoam Libai was born on September 17, 1929 in Tel-Aviv, where he also
grew up. In 1953 he graduated Summa cum Laude, at the Technion in Civil
Engineering. He joined the Public Works Department of the Government of
Israel for two years taking part in the important civil engineering project
"Yarkon Bridge". He then went to the United States to pursue higher studies at
Purdue University, and received a M.Sc. in Structures in 1956 and a Ph.D. in
Structures (Engineering Science) in 1959. Upon completing his Ph.D. Avinoam
took an Assistant Professor position at Johns Hopkins University until 1961.
His first paper, published soon after in the Journal of Aerospace Sciences
(1962), examined the nonlinear elastokinetics of shells and beams and over the
years became a key reference in the field of thin walled structures.

Libai returned to Israel in 1961, joined the Israel Aircraft Industries in Lod,
and stayed there for a productive period of ten years. He emerged to become
Principal Engineer for Structures and Principal Staff Scientist of the I.A.I.
During that period Avinoam shared major responsibilities in all engineering
projects, including the leading aeronautical platforms "Arava", "Commodore
Jet" and "Kfir". There is a common agreement that Libai was one of the key
figures in the Israeli aeronautical community during its formative years. It was
typical of this man that despite the heavy burden of work at the I.A.I. he secured
the time to teach as an Adjunct Teacher at the Technion.

In 1971, after one year as a Visiting Associate Professor, Avinoam joined
the Faculty of Aerospace Engineering at the Technion as a full Professor, and
remained there until his retirement, becoming Professor Emeritus in 1997. He
served for five years as Head of the Structures Laboratory, three years as Dean
of the Faculty and participated in and chaired numerous Technion and Faculty
committees. His thinking and advice over a wide spectrum of issues have been
much valued and always sought after. In his advisory capacity, Libai served
main aeronautical industries like the I.A.I. (1971-1975) and the Ministry of
Defense (1978-1984). In 1992 Avinoam was named the L. Shirley Tark
Professor in Aircraft Structures.

Avinoam's distinguished academic career spans nearly three decades during
which he established himself as a leading authority, of world recognition, in the
nonlinear theory of elastic shells. His research contributions appear in first rate
periodicals, covering a wide range of topics like shell buckling under non-
uniform loads, structural testing, structural analysis and design and numerical
analysis of shells. However, his main achievements are in the general
(nonlinear) theory of shells, plates and membranes. His studies of invariant
formulations of nonlinear shell theories have paved the path into accepting that
field as an integral branch of continuum mechanics. In this aspect, Avinoam
belongs to a small group of researchers who managed to develop the
engineering theory of shells into a wide research field in nonlinear mechanics,

ix
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x

employing advanced mathematical methods, with a variety of applications to
modern aerospace structures.

The style of his papers is a model of scientific writing and mastery of a rare
blend of research tools: from tensor analysis through asymptotic methods to
pragmatic engineering thinking. Publications authored by Libai are often cited
in a few languages, and there is little doubt that the bulk of his research output
is of permanent value.

Avinoam's calm and confident personality, integrity of character, noble
manners and his exceptional ability to explain profound ideas in simple words,
have made him an outstanding teacher in both undergraduate and graduate
classes.

Libai has been on many visits abroad, including sabbatical periods at
Harvard University (1977), University of Virginia (1978, 1984, 1996),
University of Oklahoma (1990) and University of Texas at Austin (1991). His
collaboration with Jim Simmonds of the University of Virginia has been
particularly fruitful. A series of co-authored papers has finally culminated in the
book The Nonlinear Theory of Elastic Shells, One Spatial Dimension (1988),
along with a recent (1998) follow up The Nonlinear Behavior of Elastic Shells.
Both volumes have received much acclaim and are already regarded as classics
within professional circles. The books are surely to remain an inspiration for
generations to come.

This volume is presented to Professor Avinoam Libai on the occasion of his
seventieth birthday by colleagues and friends who have followed and valued his
work over the years. Many ideas originated by Avinoam are scattered through
the pages and we are confident that his scientific tree has still a wealth of fruit to
bear in the future.

The Editors
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BREATHING OSCILLATIONS
OF ROTATING NONLINEARLY
ELASTIC AND VISCOELASTIC RINGS

Stuart S. Antman
Department of Mathematics,
Institute for Physical Science and Technology,
and Institute for Systems Research
University of Maryland
College Park, MD 20742-4015, U.S.A.
ssa@math.umd.edu

1. INTRODUCTION

We study special unforced planar motions of nonlinearly elastic and
viscoelastic rings, namely, motions in which the rings simultaneously
rotate and oscillate radially. The most general class of rings that we
consider can suffer flexure, shear, and both longitudinal and transverse
extensions. For shearable rings we find that the shear deformation plays
a surprising and critical role in such motions. For unshearable rings, this
role is played by the shear force.

The partial derivative
of f with respect to its second argument is denoted If x is a given
function of the time t, then the time-derivative of the composite function

1

Notation. We denote vectors (which are elements of Euclidean 3-
space) and vector-valued functions by boldface italic symbols a, b, etc.
We denote n-tuples of real numbers by boldface sanserif symbols p, q ,
etc. We denote derivatives by subscripts. To keep a systematic notation,
especially when treating Hamiltonians, we use the superposed dot not
to indicate a time-derivative, but to identify an argument of a function
that is occupied by a time derivative. In particular, we shall treat real-
valued functions of the form

D. Durban et al. (eds.), Advances in the Mechanics of Plates and Shells, 1–16.
© 2001 Kluwer Academic Publishers. Printed in the Netherlands.
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2. EQUATIONS OF MOTION FOR A
NONLINEARLY VISCOELASTIC RING

We outline the basic geometrically exact, direct, plane-strain theory of
rods that can suffer flexure, shear, and both longitudinal and transverse
extensions. (These rods are termed beamshells by Libai and Simmonds
[9] and are thereby subsumed within the theory of shells. For the connec-
tion of this theory to two-dimensional theory of continuum mechanics,
see [1, Sec. XIV.5].)

Let { i, j, k } be a fixed orthonormal basis for Euclidean 3-space. A
planar configuration at time t of a ring that can suffer flexure, shear,
and both longitudinal and transverse extensions is specified by a con-
tinuously differentiable vector-valued function with values r (s, t ) in the
{ i , j }-plane and two continuously differentiable functions with real val-
ues θ(s, t) and δ (s, t), with each of these functions having period 2π in
s. We take the domain of s to be [0, 2π]. We think of the body under
study as having a natural reference configuration in the form of a circu-
lar annulus, and we interpret s as the arc-length parameter of a suitable
unit (concentric) circle within the annulus, called the base circle. Then
s identifies material sections of the annulus. See Figure 1.

Figure 1 Reference configuration of the ring (in its 2-dimensional interpretation).
The base curve is the intermediate circle. The shaded region is a typical segment in
which the arc-length parameter ranges from 0 to s. The material point on the base
curve at the section s, shown with a black dot, has position sin s i – cos s j.



www.manaraa.com

3

We interpret r (s, t) as the position at time t of the material point
on the base circle with coordinate s. We interpret  as char-
acterizing the orientation at time t of the material cross section s. W e
finally interpret δ(s, t ) as characterizing the ratio of deformed to refer-
ence length of the section s.

We introduce the orthonormal basis

(2.1)

The strains are (v , η , µ, δ, ω) where

(2.2)

See Figure 2.
Note that r s is tangent to the deformed base curve, but it need not

be a unit tangent. The stretch of the base curve (i.e., the local ratio
of deformed to reference length of the base curve) is
It is mathematically and mechanically convenient to decompose rs with
respect to the basis {a, b} and take v, η as the corresponding strains,
rather than taking the strains to be |rs | and some shear angle. The strain
η ≡ b . r s  measures shear. η could easily be related to a shear angle,
the use of which would greatly complicate the governing equations. The
strain v ≡ r s . a ≡ k.( rs  × b) measures a volume ratio, but it is convenient
to interpret it as the main contributor to the longitudinal stretch |r s | .

For the special class of motions we shall consider, the rod-theoretic
requirement that the deformation locally preserve orientation (which
includes the requirement that the local ratio of actual to reference length
of any fiber be positive) reduces to

v > 0, δ > 0. (2.3)

Let N ( s, t ) a(θ(s, t ))+ H(s, t) b(θ(s , t )) be the contact force and M( s , t )
be the contact couple (about k ) exerted across the material section at s.
Let ∆ and Ω be the generalized forces corresponding to the strains δ and
ω through a principle of virtual power. (For mechanical interpretations
of ∆ and Ω, see [1, Sec. XIV.5].) Then (provided that the base curve
is appropriately located in the reference configuration) the equations of
motion for the ring under no external loading have the form

(2.4a)

(2.4b)

(2.4c)
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Figure 2 The configuration at time t of the material segment shaded gray in Figure 1.

where ρA and ρ J are positive-valued functions of s, roughly correspond-
ing to the mass and to the second mass moment of inertia of a cross
section per unit reference length [1].

Like r s, the contact force is decomposed along the basis {a , b }. The
components N and H (which are the natural duals of v and η ) are
not the tension and (vertical) shear forces of elementary beam theory.
(These latter components are taken with respect to the unit tangent and
normal to the deformed base curve.)

When rods are given 2-dimensional interpretations, it is customary to
take the base curve to be the curve of centroids of the reference configu-
ration because this choice often simplifies the constitutive equations. If
the base curve is curved (as in our problem), however, this simplifica-
tion produces concomitant complications in the inertia terms. To avoid
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these complications, we are here making an alternative choice of the base
curve (see [1]). Since we are treating very general constitutive equations,
we would not notice any simplification in these equations. An inkling
of the underlying issue can be gained from the observation that if the
base curve for our problem were the circle of centroids and if the mass
density of our 2-dimensional annular body were constant, then the mass
of the material outside the base curve would exceed that on the inside.

We assume that the ring is uniform, so that its material properties are
independent of s. Then ρ A and ρ J  are constants. A uniform viscoelastic
rod of strain-rate type has constitutive equations of the form

etc., (2.5)

where

etc., (2.6)

where W is a given stored-energy function, assumed to be twice contin-
uously differentiable, and N D, etc., are given continuously differentiable
functions, accounting for the dissipative parts of the resultants N , etc.
If N D = 0, etc., then the ring is hyperelastic. System (2.5), (2.6) is the
most general set of constitutive equations for a ‘visco-hyperelastic’ rod
of strain-rate type invariant under rigid motions having the kinematics
just described.

We make the reasonable symmetry assumption [1, Prop. XIV.5.22]

(2.7)

We assume that the constitutive functions are such that (2.3) is never
violated in regular motions, but do not pause to spell out specific as-
sumptions that enforce this requirement (see [4]).

Let us mention some standard constitutive restrictions. The require-
ment that W be a uniformly convex function of v, η, µ , ω is a rod-
theoretic analog of the Strong Ellipticity Condition of the three-dimen-
sional theory. This condition implies the physically reasonable assump-
tions that N is an increasing function of v for fixed values of the other
strains, that H is an increasing function of η , that M is an increasing
function of µ , etc. (Had we not used the special choices of strains and
resultants associated with the basis {a , b}, then this condition would
be so complicated that its simple mechanical consequences would not be
apparent. This uniform convexity condition is not universally valid: It
precludes several kinds of coexistent phases now under intensive study.)
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A related condition for the dissipative response is that the 4 ×4 matrix of
partial derivatives of (N D , H D , M D, ΩD ) with respect to the correspond-
ing arguments  be uniformly positive-definite. This condition
ensures that the resulting system is parabolic. A stronger condition,
which is not unreasonable, is the uniform monotonicity condition that
the 5 × 5 matrix of partial derivatives of (ND , H D , M D , ∆ D , ΩD ) with
respect to their arguments  be uniformly positive-definite.
This condition ensures a certain uniform dissipativity. In Section 5, we
discuss the effect of such conditions on the behavior of special kinds of
solutions.

We get equations for a ring that cannot suffer transverse extension
by constraining δ = 1 (and ω = 0), making this substitution into (2.5),
(2.6) for N, H, M, and ignoring (2.4c), which now is just an equation
for Lagrange multipliers   and Ω .  If we further require the ring to be
unshearable, then we constrain 

∆
η = 0, make this substitution in (2.5),

(2.6) for N, M, and treat the Lagrange multiplier H as a fundamental
unknown. We do not ignore rotatory inertia, i.e., we do not set ρJ =
0, because doing so would change the type of the equations and the
qualitative behavior of their solutions.

If we take the dot product of (2.4a) with r t , multiply (2.4b) by θ t,
multiply (2.4c) by δt, and integrate the sum of the resulting products by
parts with respect to s, we obtain the energy equation

(2.8)

where

(2.9)

is the stress power, which is non-negative if the matrix of partial deriva-
tives of (ND , HD , MD , ∆D ,ΩD) with respect to  is uniformly
positive-definite. For hyperelastic materials, for which P = 0, regular
solutions of (2.4)–(2.6) conserve energy:

(2.10)
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3. SHEARLESS OSCILLATIONS

We study the nature of unforced motions in which the ring rotates
and oscillates radially with no shearing, starting from some initial con-
figuration in which the ring is inflated and rotating. Since conservation
of angular momentum requires that the ring rotate faster when its radius
is smaller, we seek solutions of the form

(3.1a,b,c)

We now drop the superposed bars. Assumption (3.1) implies that

(3.2)

η =0, µ =1, δ s = 0 . (3.3)

We set

 etc.

Under our symmetry assumption (2.7),  = 0 = , so that the substi-
tution of (3.1) into (2.4)–(2.6) reduces these equations to

(3.4a)

(3.4b)

(3.4c)

(3.4d)

Equations (3.4b,c) together with (2.3) say that provided that 
there are constants α , β  of the same sign (determined by the initial
conditions) such that

(3.5)

Thus  either is identically zero or it never vanishes. In the former
case, (3.4) reduces to the coupled pair of ordinary differential equations

(3.6)

which describe purely radial motions. In the latter case, the motion is
overdetermined with v and δ proportional; equations (3.4a,d), (3.5) say
that this motion is not possible unless  and satisfy

(3.7)
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There is no reason to expect this condition to hold for given α, β (deter-
mined from initial conditions), much less for a range of these parameters.
(For three-dimensional interpretations of these functions, which support
this assertion, see [1, Section XIV.5]. Physically reasonable constitutive
functions that account for a Poisson-ratio effect (in which a longitudinal
tensile force produces a longitudinal extension and a smaller transverse
contraction) cannot meet this condition except trivially.) Note that ro-
tatory inertia, i.e., the positivity of ρJ, is crucial in leading to (3.7).

In summary, we have shown that generically the only solutions of
the form (3.1) describe purely radial motions. For the purposes of this
paper, these motions are degenerate.

4. OSCILLATIONS WITH SHEARING

To try to discover the source of these difficulties, we relax the require-
ment that (3.1) represent a shearless motion by seeking solutions of the
more general form

(4.1)

Note that this r is perpendicular to r s , so that this motion represents a
combination of breathing and rotation.

We drop the superposed bars from  replace  by
 replace by

(we use analogous conventions elsewhere), and set

etc. (4.2)

Substituting (4.1) into (2.4)–(2.6) we obtain the following replacement
for (3.4):

(4.3a)

(4.3b)

(4.3c)

(4.3d)

Unlike (3.4a,b,c), this system is not degenerate; as we show in the next
section, where we discuss its integrals, it has a rich collection of solutions.

How is this system modified for an unshearable ring for which η i s
constrained to be 0? In this case, H is the corresponding Lagrange mul-
tiplier, which is a fundamental unknown not specified by a constitutive
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equation. The other constitutive functions clearly do not depend on η o r
η t . We retain (3.1), but do not adopt a mechanical symmetry condition
requiring H to vanish. In this case, (4.3) is replaced by

(4.4a)

(4.4b)

(4.4c)

(4.4d)

Equations (4.4b,c) yield the conservation of angular momentum:

(4.5)

The substitution of (4.5) into (4.4a,d) produces a pretty fourth-order sys-
tem for v and δ. This system also has a rich collection of non-degenerate
solutions. The substitution of these solutions into (4.4b) or (4.4c) typi-
cally yields a nonzero time-varying expression for H. Thus even for an
unshearable ring, a nonzero shear force is essential for non-degenerate
solutions.

The modifications of (4.3) and (4.4) necessary to accommodate the
constraint δ = 1 are immediate. When δ = 1, the substitution of 
(4.5) into (4.4a) reduces the latter to an autonomous second-order ordi-
nary differential equation, which can be readily analyzed by phase-plane
methods.

5. PROPERTIES OF SOLUTIONS

Let us first study (4.3). Replacing  and  in (4.3c) with the ex-
pressions coming from (4.3a,b), we obtain

(5.1a)

which yields the conservation of angular momentum

(5.1b)

We could solve this equation for  and differentiate the solution to get
 Substituting these expressions into (4.3a,b,d), we would obtain a

complicated system of ordinary differential equations for v, η, δ.
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Let us introduce the kinetic energy function K and the stress-power
function P b y

(5.3)

(5.4)

Then the energy equation (2.8) reduces to

(5.5)

To write (4.3) as a system of first-order equations, we denote by

(5.6)

the quadruples of generalized coordinates and their derivatives, and we
introduce the corresponding quadruple p =  of generalized
momenta corresponding to q by p = i.e., by

(5.7)

We solve (5.7) for  in terms of q and p , and denote the solution by
g (q, p ). Then we define the Hamiltonian function E (the total energy)

by

(5.8)

We can now write (4.3) as the system of first-order equations:

(5.9)

where

(5.10)

and where the arguments of N D, H D , ∆ D  are
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In components, (5.9) has the form

(5.11)

where the arguments of N D , H D, ∆D are those shown above. Of course,
the last equation of (5.11), which is a consequence of the ignorability of
the generalized coordinate ψ, is equivalent to the conservation (5.1b) of
angular momentum. In terms of these new variables, the energy equation
(5.5) becomes

(5.12)

Now let us assume that P is bounded below by a constant:

(5.13)

(As our remarks in the paragraph following that containing (2.7) show,
this is a very mild assumption: If the material is hyperelastic, then
C = 0. The material is dissipative if

P > 0 except where (5.14)

The material may be said to be uniformly dissipative if (N D, H D, ∆D ) is
a monotone function of . This condition and (2.6) ensure (5.14)).
The energy equation (5.12) and inequality (5.14) imply that

(5.15)
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Next, let us further assume that

as (5.16)

This property and the bound on E imply that for any t, solutions of
(4.3) satisfy
This means that solutions neither blow up nor violate the bounds (2.3) in
finite time. By the standard continuation theory for ordinary differential
equations, it follows that solutions of (initial-value problems for) (4.3)
(or of (5.11)) exist for all time. If C = 0, then we get so that
v and δ are confined to compact sets of (0, ∞) and that
are confined to bounded sets. In this case, there is a number B such
that

Now we determine qualitative properties of solutions. Let (5.14) hold.
Then E is a Lyapunov function for (5.11). Let us further assume that
(5.15) holds, so that all solutions are bounded for all time. The LaSalle
Invariance Principle (see [7,Thm. X.1.3; 13]) then says that each solution
approaches the largest invariant subset of (q, p)-space where the deriva-
tive of E along solutions of (5.11) vanish. By (5.12), this derivative
vanishes exactly where P vanishes, i.e., where To find
this invariant set, we revert to the formulation (4.3) and seek solutions
with These solutions satisfy

(5.17a)

(5.17b)

(5.17c)

(5.17d)

From these equations, or better yet from the conservation (5.1b) of an-
gular momentum, we find that ψ t is the constant given by

(5.18)

where α is determined by initial conditions. In this case, the invariant set
consists of those constant solutions (v, η, δ, ψ t ) of (5.18) and the following
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reduced form of (5.17):

(5.19a)

(5.19b)

(5.19c)

(5.19d)

Note that (5.19c) is a consequence of (5.19a,b); we accordingly ignore it.
Thus (5.18), (5.19a,b,d) form a system of four equations for the unknown
real numbers ψ t , v, η, δ .

We use (2.7) to reduce (5.19b) to an identity by taking η = 0. If we
substitute (5.18) into (5.19a,d), we get a pair of algebraic equations for
v and δ. Now for fixed δ  > 0, the left-hand side of this version of (5.19a)
behaves like v for small v and behaves like v – 3 for large v, whereas
for reasonable W, the right-hand side approaches –∞ as v → 0 and
approaches ∞ as v → ∞. An analogous remark applies to (5.19d). An
elementary degree-theoretic generalization of these observations shows
that these coupled equations have solutions, not necessarily unique. For
certain materials (having shear instabilities, which are compatible with
the Strong Ellipticity Condition), the full system may admit solutions
with η ≠ 0.

Thus we have shown that for dissipative materials, solutions must ap-
proach a steady rotating solution. When there is more than one such
solution, the limiting state is determined by the initial conditions. As-
sociated with each stable steady state is a basin of attraction of initial
conditions.

Now let us briefly discuss hyperelastic materials, for which fD = 0
whence P = 0, so that (5.11) is a Hamiltonian system. The process of
solving (5.1b) for ψ t and substituting the result into (4.3a,b,d) is equiva-
lent to taking p4 equal to a constant in (5.8) and (5.11). We accordingly
redefine q and p to be the triples of their first three components. Of
course, (5.5) or (5.9) or (5.11) yields the conservation of energy

E (q, p) = const. (5.20)

Then for fixed q , this new Hamiltonian E is a (nonhomogeneous)
positive-definite quadratic form in p, and its dependence on q is largely
dictated by W. We can, however, choose the constant angular momen-
tum p4 so that the Hessian matrix of the kinetic energy term of E is not
positive-definite, i.e., this term is not convex. This means that we can
choose p4 so that E itself is not convex. Note further that the kinetic
energy term is a quartic in (q, p).
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Now the Strong Ellipticity Condition requires that v W ( v, η, δ ) be
convex for all η, δ and that η W ( v, η, δ) be convex for all v, δ, but it
does not require W itself to be convex, although it is not unreasonable
to require it to be so on large parts of its domain. On the other hand,
much modern work on coexistent phases is based on the assumption that
the stored-energy function has multiple local minima (so that the lim-
ited convexity required by the Strong Ellipticity Condition is completely
violated).

The importance of these remarks inheres in the fact that there is now a
very rich (but still incomplete) global theory on the behavior of solutions
of Hamiltonian systems. This theory contains a host of theorems on the
existence of solutions with a prescribed period and theorems on the num-
ber of qualitatively distinct solutions for a given constant value of the
total energy E. Typical hypotheses for many of the available theorems
for the first kind of problems involve the specification of the behavior of
E at infinity, in particular whether it is sub- or superquadratic. (The
quartic growth of the kinetic energy term in our E precludes the use
of results based on subquadratic growth.) A typical hypothesis for the
second kind of problem is that the region of (q, p)-space enclosed by the
level surface of energy be bounded and convex. Clearly, for our problem,
this convexity depends crucially on the nature of W and on the size of
p 4. Because of the richness of material response we are allowing, a whole
battery of theorems on periodic solutions would be necessary to delimit
the variety of behavior possible. For specific theorems, see [6] and [11],
and the references cited therein.

Of course, periodic solutions represent but a small range of the re-
sponse available to Hamiltonian systems, which admit very complicated
and chaotic solutions. For the theory and references, see [5, 10, 14]. Fi-
nally, it should be mentioned that while Hamiltonian systems are emi-
nently appropriate for the description of celestial mechanics, the ubiquity
of dissipation in terrestrial mechanics makes them somewhat artificial
here.

The study of stability of solutions of (5.11), with or without dissi-
pation, would be a purely academic exercise, because stability would
be treated only within the special class of motions (4.1). The correct
setting of stability of these solutions is within the class of solutions of
the partial differential equations (2.4)–(2.6) (cf. [12]). Nevertheless, our
result showing that the solutions of (5.11) for viscoelastic rings approach
purely rotating states begs to be generalized to the partial differential
equations (2.4)–(2.6) or even to the partial differential equations for a
full two-dimensional theory.
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6. COMMENTS

The system (2.4) for a hyperelastic ring for which W is a uniformly
convex function of v, η, µ, ω is a quasilinear hyperbolic system suscepti-
ble to shocks. There are a host of numerical methods designed to handle
such hyperbolic systems having but one independent variable [8]. Virtu-
ally all these methods had their source in gas dynamics. They consist in
imposing some sort of mathematical viscosity on the system with a form
suggested by the viscosity in fluids. It is shown in [3] (cf. [2]) that some
(and maybe all) of these dissipative mechanisms do not correspond to
constitutive equations invariant under rigid motion. (A mathematical
dissipation that is properly invariant in the spatial (Eulerian) formula-
tion is not invariant in the material (Lagrangian) formulation.) Conse-
quently, the numerical treatment of hyperelastic structures undergoing
rapid rotation may well lead to serious error.

The special problems treated above are each solutions to the corre-
sponding system of partial differential equations for appropriate initial
conditions. Since we know so much about these solutions, especially the
solution that rotates without breathing, the initial-value problems that
generate them are ideal settings for showing which numerical methods
lack the requisite invariance and for testing the efficacy of new numerical
methods that respect the invariance [3].
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1 . Introduction

The concept of a finite rotation vector has been introduced by Simmonds and
Danielson [15, 16] to develop a nonlinear shell theory. Initially, the objective of
introducing the finite rotation vector was, to derive a simple form for the governing
equations of nonlinear shell theory (see Atluri [3] and Pietraszkiewicz [13]). With
the progress in computer-simulation methodologies , several new issues for the
finite rotation shell theory have arisen. Some of the current issues are: (1)how to
preserve the symmetry of the tangent stiffness of a shell-finite-element; (2)how to
incorporate the drilling degrees of freedom, and (3) how to develop a consistent
thick shell theory.

A discussion of the symmetry or unsymmetry of the tangent stiffness has been
recently given in Makowski and Stumpf [9]. The Eulerian rotational variation
has most often been used in the existing literature, since the moment equilibrium
equation in the current configuration is conjugate with the Eulerian rotational
variation. As a result, the tangent stiffness matrix of the shell-element becomes
unsymmetric. Iura and Atluri [6, 7] have, much earlier, shown in the case of a beam
theory, that the variation of the Lagrangian finite rotation vector, and its conjugate
balance equation, leads always to a symmetric tangent stiffness matrix. It is
advantageous, from a computational point of view, to use a tangent stiffness matrix
which is always symmetric. The application of finite rotation vector in nonlinear
solid mechanics, and attendant computational nuances, have been discussed in
detail by Atluri and Cazzani [4].

Drilling degrees of freedom are especially important in shell structures, with
faceted joints. As indicated by Zienkiewicz [19], often, an artificial stiffness for the
drilling d.o.f. has been used in the finite element analysis. Cazzani and Atluri [5],
and Iura and Atluri [8], on the basis of a mixed variational principle developed
by Atluri [1-4], have constructed a linear membrane element with the drilling
d.o.f.. Suetake, Iura and Atluri [17] have developed a generalized functional for
shells, in which unsymmetric strain and stress measures are used, and in which the
drilling d.o.f. can be naturally incorporated. Another approach has been given by
Reissner [14], in which the generalized Piola stresses have been used to construct

17

D. Durban et al. (eds.), Advances in the Mechanics of Plates and Shells, 17–32.
© © 2001 Kluwer Academic Publishers. Printed in the Netherlands.



www.manaraa.com

18

Figure 1: Shell Geometry and Notations

a functional for geometrically nonlinear elasticity.
Suetake, Iura and Atluri [17] have indicated that more attention should be paid

to the assumptions of stress states in thick shells, in order to develop a consistent
thick shell theory. The Reissner-Mindlin shell theory has often been used in an
analysis of thick shells. Although the kinematic assumptions of this shell theory
are clear, the assumptions for the stress states have not been fully discussed in
literature. The angular momentum balance and director momentum balance con-
ditions for the shell take different forms, depending on the assumptions for stress
states. In this paper, the important role of the AMB condition is emphasized, es-
pecially in the considerations of mechanical power, and of the invariance of strain
energy function.

A generalized variational functional is constructed on the basis of the present
shell theory. The importance of the assumptions on the stress states is again
emphasized in the variational principle. Reductions of this multifield variational
principle are also discussed.

2. Preliminaries

We define the reference surface of the undeformed shell by two convected curvi-
linear coordinates ξα  (α = 1, 2). Let ξ 3 denotes the through-thickness coordinate
and A 3 the associated base vector in the reference state (see Fig.1). Let X0  be
the position vector of the shell mid-surface. The covariant base vectors are give
by

(1)
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where (. ), α denote the partial differentiation with respect to ξα, e αβ the permuta-
tion tensor, A =det| A α

.  Aβ |. The position vector at an arbitrary material point
of the shell is expressed by

(2)

The base vectors at an arbitrary material point are given by

(3)

For later convenience, we introduce the rotated triad defined by

(4)

where R is the finite rotation tensor. The contravariant base vectors are defined

by
(5)

where δ i
j is Kronecker’s delta.

We briefly describe the finite rotation tensor R (see Atluri and Cazzani [4] for
more detailed discussion). Let e be a unit vector satisfying R e = e, and θ t h e
magnitude of rotation about the axis of rotation defined by e. Then the finite
rotation vector θ θ is defined by θθ = θ e. With the use of finite rotation vector θ ,θ ,
we obtain the relationships between R and θ, θ, expressed as

(6)

Since RR t = I, δRR t is the skewsymmetric tensor. Then there exists a variation
δφ satisfying the following relation:

(7)

The variation δφ, which we refer to as the Eulerian variation, has often been used
to construct the weak form of moment balance laws, since δφ is conjugate with
the moment equilibrium equation in the current configuration. The disadvantage
of using δφ is that it results in an unsymmetric tangent stiffness. Iura and Atluri
[6, 7] have shown, for the beam problem, that the use of the finite rotation vector
θ θ always leads to the symmetric tangent stiffness. We call the variation δθ θ as the
Lagrangian variation of the finite rotation vector. The relation between δφ and
δθ θ is given by δ θ  = Γδ θ θ where Γ is expressed as (see Atluri and Cazzani [4])  

Let a α and a 3 denote the base vectors of the deformed shell mid-surface, and
u 0 the displacement vector at the mid-surface (see Fig.1). The base vectors a α
are expressed as

(8)
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The definition of a 3 depends on the hypothesis used and shall be discussed later.
The base vectors in the deformed shell domain are expressed as

(9)

The balance laws for three dimensional continuum are written as (see Atluri
[3] for a detailed discussion)

(10)
(11)

where t is the first Piola-Kirchhoff stress tensor, F the deformation gradient tensor,
∇ the gradient operator, ρ 0 the mass density in the undeformed state, p the body
force vector and ( )t the transpose.

3. Linear Theory of Plates

In this section, we briefly describe a linear theory of membrane and bending prob-
lems for elastic plates. The Kirchhoff-Love hypothesis is used in the bending
problem. Beginning with the LMB and AMB equations for three dimensional
continuum, we obtain the LMB and AMB equations for the membrane problem,
and the LMB, AMB and DMB equations for the bending problem. The drilling
d.o.f. is introduced naturally in the membrane problem by using the unsymmetric
membrane strains.

3.1 MEMBRANE PROBLEMS OF PLATES

3.1.1 Balance laws for membrane problem
The LMB and AMB equations for 3-D continuum is written as

(12)
(13)

In the case of the membrane problem, the balance equations are obtained by
integrating Eqs.(12) and (13) with respect to ξ3 . The LMB equations in the
direction of ξ α and the AMB equation about ξ 3  are written, respectively, as

(14)
(15)

where

(16)

in which h +  and h – denote the coordinates of upper and lower surface of the plate,
respectively.
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3.1.2 Kinematics for the membrane problem
The deformed base vectors are written as

(17)

(18)

where be the rotational variable which transforms Aα
into kα such that

(19)

The deformed vectors are written in the component forms, as

Since we have

(20)

(21)

where c 11 and c 22 denote the stretching tensors, and c12 and c 21 the shearing
tensors. As shown in Eq. (21), the tensors cαβ are not symmetric. The unsymmetric
strain tensors cαβ  accompanied with proper constitutive equations, have been used
to develop a membrane finite element with drilling d.o.f. (see Cazzani and Atluri
[5], and Iura and Atluri [8]).

When the components of the stress resultant vector are used, the AMB equation
expressed by Eq. (15) takes a simple form such that N12 = N 21. The proper
constitutive equations for N 12 and N 21 may be expressed by and

where E 0 is the elastic modulus. Therefore, with the use of strain
tensors, the AMB equation is rewritten as c 12 = c 21. Then. from Eq.(21), we have

(22)

Note that the above equation is derived under the condition that the AMB equa-
tion holds. Substituting Eq. (22) into Eq. (21),we obtain the following conventional
expression for the symmetric shearing strain:

(23)

3.2 BENDING PROBLEMS OF PLATES

3.2.1 Balance laws for bending problem
In the case of bending problem, the balance equations consist of the LMB, AMB
and DMB equations. The DMB equation is obtained by integrating the product of
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Eq.(12) and ξ3 with respect to ξ3. The balance equations for the bending problem
are written as

(24)
(25)

(26)

where

(27)

(28)

in which H α is the director moment vector. The elimination of N 3 from the AMB
and DMB equations gives the following moment equilibrium equation:

(29)

where the internal and external moment vectors are defined by

(30)

When the shearing forces Nα 3 are eliminated from Eqs. (24) and (28), we obtain
the following LMB equation:

(31)

3.2.2 Kinematics for the bending problem
The deformed in-plane base vectors are written as

(32)

where
vector is written as

Since the Kirchhoff-Love theory is used, the deformed normal

(33)

Let θ 2 and θ 3 be the components of rotational variable which transforms A3
into such that

(34)

The comparison of Eq. (33) and (34) leads to

(35)
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The mapping of base vectors a i into k i due to the rigid rotation is expressed as

(36)

The curvature tensor b α β is defined by

(37)

Since we have

(38)

4. Nonlinear Thick-Shell Theory

The plane-stress assumption has always been used in a thin shell theory. As far as
a thick shell is concerned, the stresses along the shell thickness might not be neg-
ligible. The out-of-plane shearing stresses are taken into account in the Mindlin-
Reissner shell theory, while the change of thickness is not taken into account. In
this paper, we pay attention to the stress-states of the shell in addition to the
kinematic assumptions. We develop a shell theory on the basis of the following
four assumptions :

where k3 = RA3 . The assumption such that a3 = k3 has been employed in the
Mindlin-Reissner shell theory. The assumption such that a 3 = zk 3 allows the shell
thickness to change. The assumptions (G1) and (GM1) correspond to the Mindlin-
Reissner shell theory. The normal stresses t3i to the shell mod-surface are assumed
to be zero in (GM1), while the kinematic assumption only is given in (G1). The
change of shell thickness is allowed in (G2) and (GM2). The kinematic assumption
only is used in (G2), while both kinematic and stress states assumptions are used
in (GM2).

In the assumptions (GM1) and (GM2), we assume that t3 α = 0. This assump-
tion does not indicate that the out-of-plane shearing stress resultants vanish. It
will be shown later that the shearing stress resultants Nα 3 do not vanish even if
N 3 α = 0 holds.

The time derivative of a3 corresponding each assumption is given by

(39)

(40)

where W x I = RR t . We introduce the strain vectors cα and bα defined by

(41)
(42)



www.manaraa.com

24

where c α and b α denote the stretching and bending strain vectors, respectively.
The present strain vectors are associated with Ai so that they are the Lagrangian
measures. Since the AMB equation is not embedded, the stretch tensor c αβ is no
longer symmetric. With the help of the strain vectors, the deformation gradient
tensor is written by

(43)
(44)

4.1 BALANCE LAWS

The LMB and AMB equations for the shell are written, with the help of Eqs.(10)
and(11), as (see Suetake, Iura and Atluri [17])

(45)

(46)

where t i is the first Piola-Kirchhoff stress vector and For later
use, we introduce the following stress resultant vectors:

(47)
where It  should be noted that these vectors are the stress resultant  
vectors of the 1st Piola-Kirchhoff stress type.

The LMB equation is derived by integrating Eq.(45) with respect to ξ3 and
using the divergence theorem. The LMB equation under (G1) and (G2) is given
by

(48)

where the body force vector is defined by

(49)

The LMB equation under (GM1) and (GM2) takes the same form as that of
Eq.(48) except the definition of the external force which is expressed by

(50)

(51)

The AMB equation is derived by integrating Eq.(46) with respect to ξ3 . The
AMB equations under each assumption are written as

(52)
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(53)

(54)

Note that a3  = RA 3 in (G1) and (GM1) while a 3 = z R A 3 in (G2) and (GM2).
The following points should be stressed herein:

• The AMB equation (54) under (GM2) includes the underlined term such
that a 3 x N. Since N =  this term vanishes because of the
definition of the cross product. As a result, the AMB equation under (GM2)
is the same as that under (GM1).

• The AMB equation under (G1) and (G2) does not indicate that N
3 α

= N α 3

where

• The AMB equation plays an important role in the mechanical power
objectivity, which shall be discussed in detail, later in this paper.

and the

The DMB equation for the shell is obtained by integrating the product of
Eq.(45) and ξ 3 with respect to ξ3 . The DMB equations under each assumption
are expressed by

(55)

(56)

(57)

The conventional AMB for the shell, or the moment equilibrium equation, is
obtained by using AMB and DMB equations. Whichever assumption is employed,
the moment equilibrium equation for the sell is given by

(58)

where

(59)

The DMB equation is used to derive the moment equilibrium equation. Another
aspect of the DMB condition is the definition of N3 or N. In the case of (G1)
and (G2), N 3 is not connected directly with the associated strain vectors through
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the constitutive equations. In the case of (GM2), one equation is added to the
constitutive equations while there are two additional variables N and z. Although
the number of unknowns seems not to equal to the number of equations, the DMB
equation is used to define N 3 or N. Therefore, the number of unknowns equals
to the number of equations.

4.2 MECHANICAL POWER

The mechanical power for a three-dimensional continuum is expressed as (see
Atluri [3])

(60)

The expression of the M.P. leads to the conjugate relationships between strain
and stress measures. The present strains defined by Eqs.(41) and (42) are the La-
grangian measures. We introduce, herein, the following Lagrangian stress resultant
vectors:

(61)

The above defined vectors are the stress resultant vectors of the Biot-Lure stress
type (see Atluri [3]). According to Atluri and Murakawa [10, 11], the inversion of
1st Piola-Kirchhoff stress tensor and the associated strain tensor is not one-to-one.
The symmetric part of the Biot-Lure stress tensor or the Jaumann stress tensor
and the conjugated strain tensor leads to a one-to-one mapping.

With the use of Eqs.(60) and (61), we obtain the expression for the mechanical
power written as

(62)

(63)

(64)

(65)

where z = z A3 is the Lagrangian stretching vector along ξ3. In contrast to
the three-dimensional continuum mechanics, the mechanical power of the shell
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consists of the two parts: one is associated with the expression for the conjugate
relationships between stress and strain measures, and the other the expression for
the AMB equation. When the AMB equation under each assumption holds, the
second terms in Eqs. (62) – (65) vanish. Then we obtain the following conjugate
relationships:

The strain energy function may be expressed as

The constitutive equations are written as

(66)

When the strain energy function is expressed in terms of the displacement and
rotational variables, it is crucial to use the finite rotation vector as the rotational
variable. As discussed before, the variation δφ has often been used in the existing
literature. The vector φ, however, does not exist so that the strain energy function
can not be expressed in terms of φ.

4.3 OBJECTIVITY

We consider the objectivity or the invariance of strain energy function. Since the
present strain vectors cα, b α and z are associated with the reference base vectors
Ai , they are the Lagrangian measures. It is, therefore, clear that the present strain
vectors are objective (see Ogden [12]). Let Q be a proper orthogonal tensor. The
objective strain vector is transformed such that

(67)

where ( )* denotes the value after the rigid rotation. The strain energy function
after the rigid rotation is expressed as

The variation of strain energy function under (G1) and (GM1) is written as

(68)

where
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The variation of strain energy function under (G2) and (GM2) is written as

(69)

where

Since the strain energy function should be invariant under the rigid rotation, we
have . Therefore, the invariance of strain energy function under any
assumption asserts that

(70)

The above equation is not always satisfied under the present assumptions. The
AMB equation under (G1) and (G2) is different from Eq. (70). Therefore, the
invariance condition of strain energy function is not satisfied when the assumptions
(G1) and (G2) are used. However, the AMB equation under (GM1) and (GM2)
takes the same form as that of Eq.(70). This fact shows the importance of using
the correct assumptions for the stress states .

5. Variational Principle

According to Atluri [1-4] and Suetake, Iura and Atluri [17],  the generalized func-
tional for the shell is given by

(71)

where denotes the Lagrange multiplier, the prescribed value at the boundary,
and W0 and c3 are given, under each assumption, by

The variables subjected to variation in Eq. (71) are
and a3. The first variation of the functional F1 is written as
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(72)

where the following notations are used:

The underlined term c.e. in Eq. (72) is given by

In the case of (G2), the

(58) can be recovered irrespective of . Therefore, under any assumption used
herein, the exact moment equilibrium equation is obtained from this functional.

constitutive equation gives the physical meaning of , which states that
The resulting AMB and DMB equations including is different from Eqs.(52)
and (55), respectively. In the case of (GM1), appears in the AMB and DMB
equations which is not the case in Eqs. (53) and (56). It should be noted that,
with the help of the AMB and DMB equations, the moment equilibrium equation

which are the same as those derived in section 4.1.

Since a 3 is subjected to variation, the DMB equation is recovered as the Euler
equation. The assumptions (G1) and (GM2) gives the AMB and DMB equations

In the Hu-Washizu variational principle, the stress and strain tensors, and
the displacement and rotational vectors are subjected to variation (see Washizu
[18]). The vector a 3 is subjected to variation in F1 . The vector a 3 is not the
strain vector so that a 3 = R A 3 (under (G1) and (GM1)) or a 3 = z RA 3 (under
(G2) and (GM2)) is the subsidiary condition in the Hu-Washizu type functional,
expressed as
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(73)

where W0 and c.c. are given, under each assumption, by

The Euler equations obtained from δ FH W = 0 are the constitutive equations,
the compatibility equations, the balance equations, and the boundary conditions.
Since the constitutive equations and the compatibility equations are the same as
those of Eq. (72), we show the balance equations and the boundary conditions as
follows:

Constitutive Equations + Compatibility equations

(74)

Note that, in the case of Hu-Washizu type functional, the moment equilibrium
equation is recovered in place of the AMB and DMB equations.

With the help of Legendre transformation, we may have the complementary
function defined by

(75)
(76)

Substituting Eq. (75) or Eq. (76) into Eq. (73), we have the Hellinger-Reissner type
functional expressed as

(77)



www.manaraa.com

31

where B0 and c.c. are given, under each assumption, by

(G1) and (GM1) :

(G2) and (GM2) :

The Euler equations are the constitutive equations, the LMB equation, the moment
equilibrium equation and the boundary conditions.

The purely kinematic functional is obtained from Eq.(77) by eliminating the
stress resultant vectors through the constitutive equations.

6. Conclusion

A nonlinear thick shell theory has been developed on the basis of kinematic and
stress states assumptions. Balance laws of the shell are derived from the LMB
and AMB equations of three dimensional continuum. The resulting AMB equa-
tion plays an important role in the mechanical power and the objectivity. When
the AMB equation is satisfied, the mechanical power leads to the conjugate rela-
tionships between the stress and strain measures. The objectivity or invariance of
strain energy function is not always satisfied even if the AMB equation is satis-
fied. The satisfaction of objectivity depends on the assumptions used. When both
kinematic and stress states assumptions are used, the objectivity is satisfied. The
use of kinematic assumption only is not enough to preserve the objectivity.

A generalized variational principle has been derived from the Atluri’s varia-
tional principle. Unsymmetric stress resultant vectors are used so that the drilling
degrees of freedom are introduced in a natural way. In contrast to the existing
literature where the Eulerian rotational variation has been used, the rotational
variation is expressed in terms of the variation of finite rotation vector. The use
of the finite rotation vector enables us to construct the strain energy function.
Therefore, the resulting tangent stiffness is always symmetric. The generalized
functional leads to the LMB, AMB and DMB equations. The resulting AMB
equations are not always the same as those derived from the balance laws of 3-D
continuum.

7. References

1. Atluri, S.N. (1979) On rate principle for finite strain analysis of elastic and inelastic
nonlinear solids, in Recent Research on Mechanical Behavior of Solids, University
of Tokyo Press, pp.79-107.

2. Atluri, S.N. (1980) On some new general and complementary energy theorems for
the rate problems in finite strain, classical elastoplasticity, Journal of Structural
Mechanics, 8 (1), 61-92.

3. Atluri, S.N. (1983) Alternate stress and conjugate strain measures, and mixed
variational formulations involving rigid rotations, for computational analysis of
finitely deformed solids, with application to plates and shell - I Theory, Computers
and Structures, 18 , 93-116.



www.manaraa.com

32

4. Atluri, S.N. and Cazzani, A. (1995) Rotations in computational solid mechanics,
Archives of Computational Methods in Engineering, 2(1), 49-138.

5. Cazzani, A and Atluri, S.N. (1992) Four-nodded mixed finite elements, using un-
symmetric stresses, for linear analysis of membranes, Computational Mechanics,
11, 229-251.

6. Iura, M. and Atluri, S.N. (1988) Dynamic analysis of finitely stretched and rotated
three-dimensional spaced-curved beams, Computers and Structures, 29 (5), 875-
889.

7. Iura, M. and Atluri, S.N. (1989) On a consistent theory, and variational formu-
lation of finitely stretched and rotated 3-D space-curved beams, Computational
Mechanics, 4, 73-88.

8. Iura, M. and Atluri, S.N. (1992) Formulation of a membrane finite element with
drilling degrees of freedom, Computational Mechanics, 9 , 417-428.

9. Makowski, J. and Stumpf, H. (1995) On the “symmetry” of tangent operators in
nonlinear mechanics, Z. angew. Math. Mech., 75 (3), 189-198.

10. Murakawa, H. and Atluri, S.N. (1978) Finite elasticity solutions using hybrid finite
elements based on a complementary energy principle, Journal of Applied Mechan-
ics, ASME, 45 , 539-547.

11. Murakawa, H. and Atluri, S.N. (1979) Finite elasticity solutions using hybrid fi-
nite elements based on a complementary energy principle. Part 2: incompressible
materials, Journal of Applied Mechanics, ASME, 46 , 71-77.

12. Ogden, R.W. (1984) Non-linear Elastic Deformations, Ellis Horwood Limited.

13. Pietraszkiewicz, W. (1979) Finite Rotations and Lagrangian Description in the
Nonlinear Theory of Shells, Polish Scientific Publications.

14. Reissner, E. (1984) Formulation of variational theorems in geometrical nonlinear
elasticity, J. Eng. Mech., 110 (9), 1979-1988.

15. Simmonds, J.G. and Danielson, D.A. (1970) Nonlinear shell theory with a finite
rotation vector I and II, Proc. Kon. Ned. Ak. Wet., B 73 , 460-478.

16. Simmonds, J.G. and Danielson, D.A. (1972) Nonlinear shell theory with finite
rotation and stress-function vectors, J. Appl. Mech., ASME, 3 9 , 1085-1090.

17. Suetake, Y., Iura, M. and Atluri, S.N. (1999) Shell theories with drilling degrees
of freedom and geometrical and material assumptions, Computer Modeling and
Simulation in Engineering, 4(1), 42-49.

18. Washizu, K. (1982) Variational Methods in Elasticity and Plasticity, 3rd ed., Perg-
amon Press.

19. Zienkiewicz, O.C. (1977) The Finite Element Method, 3rd ed., McGraw-Hill.



www.manaraa.com

ON THE THEORY OF QUASI-SHALLOW SHELLS

E.L. AXELRAD

137 Chapman Rd., Woodside, CA 94062, USA

Abstract – The theory of small-strain unrestricted deformation of thin elastic shells is specialized to
the ‘Donnell-type’ theory of quasi-shallow shells, which owes its consequent - intrinsic and dual -
formulation to the idea first enunciated by Avinoam Libai. This theory is explored with respect to the
accuracy, adequacy range and the physical meaning of its basic hypotheses.

1. Introduction

Are the specialized branches of the shell theory still required? Will not the
numerical solutions soon enable the general shell theory, or even the three-dimensional
continuum theory, to become fully sufficient for any practical requirements? The past
experience indicates clearly: in the foreseeable future the specialized theories shall
remain useful, even indispensable. This situation is well recognized in Physics: “the
more complicated is the system, the further simplified must be its theory” (Y.I. Frenkel).
Moreover, vis-a-vis numerical data a structural engineer is often in a position depicted
by A.Einstein: “Confronted with the individual results of empirical investigation, he has
to remain in the state of helplessness, until the principles needed for deductive judgment
become accessible to him.” This role of specialized analysis is substantiated by the
treatment of modern composite shell structures [23].
In the applications of shell theory, most basic results of practical value have been

achieved not by the general theory, but by its ramifications simplified by specialization.
The contribution of the membrane theory is memorable. And the break-through to
problems encorporating the wall-bending the shell theory owes to the axisymmetric
analysis, given by H.Reissner [2] (1912) and extended by his associate E. Schwerin in
1918 to the laterally loaded shells of revolution (which owes much to the F.Y.M.
Wan work - cf. ref. in [16, 18]). The treatment of shells designed for large deformation
has been started by E.Reissner’s [20] (1950) nonlinear axisymmetric analysis.

H.Reissner founded in 1912 [2] also the intrinsic formulation of the theory - one free
of any use of displacements as unknowns in the equations. This approach, based on the
compatibility and equilibrium equations, proved the most effective in the general shell
theory [4] and indispensable in the specialized branches, which serve virtually all the
nonaxisymetric nonlinear problems. This includes the treatment of shells allowing
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large deformation (flexibility); the influence of the large precritical deformation on
buckling has been evaluated by means of the local-stability approach.[9, 18].

The Donnell-type theory [3, 6, 10, ...] has guided most investigations of buckling and
postbuckling of elastic shells. It has achieved its unrivalled results thanks to its
striking simplification, compared to the general shell theory.

The Donnell-type theory has been founded in 1933-l934 [3] for cylinders.
Simultaneously, a similar theory has been invented in USSR by H.M.Mushtary.

In 1944 V.S. Vlassov extended the theory to non-cylinder shells and introduced the
Airy function for the stress resultants. (This was preceded in 1939 by the work of
S.Feinberg, also in Russian.) However, the bending strains were still determined in
terms of displacements. Moreover, this was done by means of linear strain-
displacement relations, where only the terms with the normal component of deflection
had been retained. That is, the nonlinear problems were treated on the basis of the
drastically abridged linear relations. (These were relations introduced in 1874 in the
first ever work on shells [1] and constantly criticized till the middle of 1950-s.)

The insufficiency of the part of the Donnell-type theory, which treated the strain,
particularly its illegitimacy for large rotations, has been fist certified in 1963 by L.H.
Donnell himself. In an unpublished lecture “General shell displacement-strain
relations” (given 1964 also in Leningrad) L.H. Donnell investigated the strain caused by
unlimited displacements. But this result could not be incorporated into the theory. The
unreliable strain-displacement relations remained an indispensable part of the Donnell-
type theory. - For nearly 30 years after the inception of the theory in 1934, there was
no alternative.

Despite its illegitimate part, the theory did not incur any widely perceived grave errors
in applications. This ‘skating on thin ice’ [10] was, in actual fact, made possible by the
concentration on a quite specific class of problems - those of buckling with small
wave-length pattern. Such modes do, indeed, involve nearly exclusively displacements
of the kind shown later to justify the strain-displacement relations employed by Donnell
[3]. - These modes encompass intensively varyable, predominantly normal, deflection
and no large rotations.

The idea enunciated by A.Libai in 1962 [6] has opened the way to the consequent
formulation of the Donnell-type theory. - The bending strain has been expressed, in
terms of a curvature function W, dual to the Airy function F. This idea of A.Libai
allowed to free the theory of its compromise and to make its statement fully intrinsic
and dual. The general solution of all problems, linear and nonlinear, has been
formulated in terms of merely two resolving functions.- W and F - determined by
means of two simultaneous equations, dual in their linear terms [10].
The term “theory of quasi-shallow shells”, or “a theory for shells of small Gaussian

curvature” [7], [10], gained wide acceptance. The theory has been later recognized to
be adequately representing ‘strongly varying deformation’ [18]. As the theory proved
not to be unconditionally applicable to shells which may be described as “quasi-
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shallow” or “of small Gaussian curvature”, it will be further referred to as Donnell-
type theory or as Donnell-Mushtary-Vlassov-Koiter- theory, short: DMVK- theory.

The task of what follows is threefold: 1) To state the basic assumptions of the
Donnell-type theory in a somewhat more consequent form, one not dependent on the
values of stress or strain. 2) To display the physical sense of these assumptions. 3) To
estimate the inherent error of the theory and to delineate the domain of problems, for
which this theory is adequate in accuracy to the general one.

The error of the Donnell-type theory proves to depend on both the shape and the
stress state of the shell. Specifically, both turn out to be represented by intensities of
variation along the reference surface These intensities are measured: a) by intervals Lα
of variation of the stress state; b) by principal curvature radiuses Rα , which are, in
fact, the intervals of variation of unit normal vector n of the surface. For the Donnell-
type theory the error estimate is Lα ²/Rα ². This means: the theory does not involve
additional errors for those stress states which vary with both surface coordinate much
more intensely than the unit normal vector n - when Lα ²/R α ² ≤  h/ | Rα | .

To compare, recall the other two specialized shell theories. The membrane theory is,
in certain respect, complementary to the DMVK-theory. - It is adequate for stress states
varying with the two surface coordinates less intensely than n. The third specialized
theory, which covers stress states assuring flexibility of a shell - large deformability by
small strain, is adequate for (L2  / L 1  )²  << 1. It serves the domain between those of the
first two [24].

A review of the field equations of the general theory of thin shells precedes in
what follows (Sect.2-4) the discussion of the Donnell-type theory. This part of the
paper has to make it self-contained. Its other purpose is to state the shell theory entirely
in terms of resultants defined physically - representing the strain and stress without
any requirement for the specially defined “best” or “best modified” resultants.

This formulation of the general theory originates in a vectorial treatment of the local
deformation. It starts with the metric and the curvature of the reference surface
determined by local-geometry quasi-vectors aα , b α . The strain and curvature-change
are defined and determined by subtracting the initial local-geometry vectors, moved
with the tangent plane during the deformation, from such vectors of deformed shape.
The essential point is: both the initial and the deformed local shape variables are
decomposend in one and the same local reference basis, which moves with each point
of the surface but does not deform . (Such basis is due to Alumae (PMM, 1956,
p. 136ff), and, in a later context, to Simmonds and Danielson .) The so defined
membrane strain Eαβ is equal to (aα β* – aαβ) / 2 . However, the vectorialy defined
bending-strain ραβ is not identical to the “natural choice” b αβ* – b αβ. The symmetric

changes of curvature. The ρ αβresolves the “difficulty in defining a finite bending strain
α β and δραβ prove to be the virtual-work conjugates

of the actual (not of any modified) stress resultants nαβand mαβ.

The nonlinear equations of compatibility and equilibrium display a simple duality .

part of the tensor ραβ proves to be nothing else but the “ best modified” tensor of

tensor ” [7]. - The variations δ E
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2. Surface shape and strain. Compatibility

The reference surface is set at the middle of the wall thickness - the optimum choice
for homogeneous isotropic shells (cf., e.g., [18]). The radius vector r, from a fixed pole
to a generic point of the surface, is determined by Gaussian coordinates xα . - All
Greek-letter indices take the values 1, 2. The tangential base vectors are defined as a α
= r , α . A comma preceding a subscript α denotes a partial (not a covariant)
differentiation with respect to xα .

The contravariant base a α is defined by the orthogonality   and
by a α• aα = 1. Components of the metric tensor are: a αβ = a α • aβ , aαβ = a α• aβ  

The unit normal vector of the surface is
The local shape of the reference surface, is displayed by the rotation of a tangent

plane, when shifted along the surface. The position of the plane is indicated by the
normal vector n (x α). This leads to the description of the curvature of the surface by
vectors b α [19]:

(2.1)

The Einstein summation convention is employed. The b defined in (2.1) is equal toαβ
that of Sanders [7]. (The tensors a αaα and a αbα - can, following [21, 22], be
defined in the coordinate-free form - as ∇r and ∇n.)

(2.2)

The local shape is determined, besides b α , by curvature vectors k α [14] which,
in contrast to b α , include n -components. The k α   dxα is defined as the angle between
the tangent planes at the points xα and x α + dx α with a distance a α dxα between them.
Thus, k α determines the derivative, with respect to xα, of any unit vector v bound to the
tangent plane:

Three coordinates xα , z label a material point; they are not changed by deformation.
Other variables take with the deformation of the surface new values which will be
denoted by an asterisk superscript With the new values
of variables, the relations (2.2) determine kα* and the derivatives for the deformed,
current, state:

For a continuous surface, the radius vector r* and any unit vector v*, bound to the
tangent plane, are continuous functions of xα . - For any current shape (also for the
initial one), the continuity conditions: lead to

(2.3)

These equations are, of course, valid also for the initial shape - for the kα and a α. The
first of eqs. (2.3) is equivalent to the three scalar relations of Gauss and Codazzi .
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The initial-curvature vectors bα and k α are unchanged, with respect to the local
reference basis a α . During a deformation of the surface the bα and k α move, rotate,
together with this basis - with the tangent plane.
Positions, attained by the vectors aα , b    α and k α in the course of deformation, may

be denoted by a special index (as in [24]). However, different shapes of the surface and
the corresponding positions of the local basis aα , of b α and k α , rarely appear in an
analysis simultaneously with their initial position. (An exception occurs in the sequel-
in the derivation of the eq.(2.11), where the local basis aα of a deformed surface
appears together with this basis in the undeformed-state position .)
The vector a 3 ≡ ≡ a 3 ≡ ≡ n moves into the normal vector of the deformed surface n*. The

vectors a , n* constitute a local basis, which in the course of deformation rotates withα
the tangent plane without being deformed. In terms of the rotated local basis there are
expansions:

(2.4)

As the shear strain changes the angle between xα -lines, these lines do not stay tangent
to the a α . The basis vectors tangent to xα -lines on the deformed surface are a α* = r,α *.
All variables describing the deformed shape can, of course, be decomposed in the
deformed basis aα*, a β*.But, ordinarily, the undeformable local basis aα , a β proves
preferable. Components of the characteristics of deformed geometry in the local basis
a α will be denoted by a prime superscript:

(2.5)

A pleasing feature of the basis a
indices is done with the metric of the initial geometry - with a

 α , displayed in (2.5): the raising and lowering of

 αβ ., a αβ .

The strain of the surface will be characterized by vectors Eα , ρα  and K . Theseα
are defined as the difference between the aα*, b α* and kα* of the current shape, and
the respective vectors a α , b α and kα (which are recalled to be the initial a α , b α and
k α , moved with the tangent plane, but not otherwise changed by the deformation). The
strain components are defined by the following relations, where all vectors - aα* and
a α , b α ∗ and b α, *- are decomposed in the same basis, aα :

(2.6)

(2.7)

(2.8)

The components Eαβ represent the extension and the shear strain. This is displayed
clearer by ortogonal x α . The curvature-change Kα  will be useful besides the ρα .
A position of the a α inside the tangent plane of the deformed surface specifies a
partition of the shear angle into the two angles between aα and a α *. The symmetricity
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(2.9)

condition Eαβ = E βα is with (2.6) represented by a αβ ' = aβα '. This choice makes
E αβ equal to the standard strain tensor (aαβ * – a αβ )/ 2 .

However, the is different from the tensor , known as
the “obvious choice” for the bending strain. The relation between the two is given by
(2.4)-(2.7):

Compatibility equations for the strain vectors Eα , K α follow from (2.3) with (2.6)
and (2.8). The transformation of (2.3) requires derivatives of the local basis aα and
curvature vectors kα , which have moved in the course of surface deformation.

To differentiate with the vectors aα and k α in their current-state orientation, the
initial -state directions of these vectors are in this subsection indexed by 0 - written as

. A rotation of a vector bound to the tangent plane, during the deformation
of the surface, will be represented by the index "rotated ". With this, the relation
between the vectors in their current and initial states is: rotated  ·

In the initial state, the constitute with the angle . The
angle between the rotated local-basis vector a α(x α+ dxα) and the a α(xα) - the angle
between the tangent planes of the deformed surface - is
With from (2.8), with the expansion of kα from (2.4) and (2.2), the
above considerations lead to formulas for the derivatives of the local vectors a α and
kα in terms of the derivatives of these vectors on the initial-shape surface

(2.10)

These relations read: the derivative of a rotated vector is equal to the rotated derivative
of this vector on the initial-state surface plus a term reflecting the bending strain.

Formulas (2.10) are useful also for determining the covariant derivatives.
Insert into (2.3) the and and their derivatives, from

(2.7), (2.8) and (2.10). Take into account, the equations (2.3), written for the initial
aα , k α (specified above as ). This leads, finally, to the equations:

(2.11)

The “load” terms q c a n d m c serve in (2.11) to complement the analogy with the
equations of equilibrium, they may represent temperature expansions or be zero.
The nonlinear vector compatibility equations (2.11) have initially been obtained in a
different way [14] . They are an extension of the linear equations of E.Reissner (1974 -
[20], p.353). The recent work of A.Libai and J.G.Simmonds [22], made these equations
to a nearly self-evident consequence of the new form of the theory.

Written for a small increment of deformation, equations (2.11) do not contain the
nonlinear term K1 × K2 . The nonlinearity is then represented only implicitly. - The
equations (2.11), are referred to the current shape. The derivatives take this into
account as exemplified in (2.10).
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The component form of the compatibility equations (2.11) is obtained with the
decompositions of Eα and K α in the standard way. These six equations, written
without terms of relative magnitude of the strain and for qc , m c= 0 , are

(2.12)

(2.13)

(2.14)

(2.15)

Here is the Levi-Civitta tensor:

The semicolon subscript denotes the covariant derivative, which in all cases concerns
here components with respect to the rotated local basis aα and a β , not to the
deformed basis .

For small strain, the deformed curvature components and bβ λ' can be replaced in
(2.12), (2.15) by the initial-geometry components and bβλ.

The expression in brackets in (2.15) coinsides with , as given by (2.9).
The non-differential equation (2.15) determines the skew part of the bending-strain

ρα β and, thus, renders its symmetric part 'ρ αβ .

3. Stress resultants. Equilibrium. Duality

Tractions acting in the normal sections xα = const of the shell are represented by
resultants reduced to the reference surface. The force and moment resultants, acting on
the element a β dx β of this section, are defined and determined by

(3.1)

Consider an element of the shell, bounded by sections = const and
encompassing the reference-surface area Denote by qd A, m dA the
force and moment resultants of the load acting on the element. The equilibrium
equations for the element are readily obtained in the form

(3.2)

The nonlinearity, resulting here from the deformed shape of the shell, is taken into
account in the derivatives and in . For small strain, can be replaced in
(3.2) by aα .

The components of the resultants are defined and denoted by:

The component equations following from (3.1) - (3.3) are (for m = 0):

(3.3)
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(3.4)

(3.5)

(3.6)

(3.7)

The non-differential equations (3.7) determine the skew and the symmetric part of the
tensor n αβ. With the accuracy of the small-strain theory, it can be set in (3.7)

The duality of the equations of compatibility (2.11) and of equilibrium (3.2) is made
transparent by their simplicity. It renders each equation from the dual one by the
replacement of variables

(3.8)

The static-geometric analogy (3.8) extends to the nonlinear theory the duality relations,
which the theory owes to Lur’e [4]. This duality is perturbed merely by the term
K1× K2 of the compatibility equation (2.11). And in the incremental, step-by-step,
solutions, usual for nonlinear problems, the term K1× K 2 can be made negligible.

The virtual work of the inner forces pro unit aeria of the reference surfaces (δ W ) can
be expressed either in terms of the vector resultants of strain and stress or of the

symmetric parts of their respective
components. As discussed in [24]:

(3.9)
We recall here, that mαβ ≅ m β α[ 1 9 ] . With the definition (2.9) of the bending

strain ραβ , the δ W(nαβ,...) follows for small strain directly from the δW of [7] . - The
ραβ eliminates the “difficulty in defining the finite bending strain because the

coefficient of M0
αβ

in this expression is not the exact variation of anything” [7]. For

small strain the M0
αβ of [7] is identical to m αβ - the mentioned coefficient is δ('ραβ ) .

It is abundantly clear: the need for “modified stress tensors” had been caused solely

by the use of The need disappears with the use of

bending strain defined by the same basis for bαβ’
and bαβ – - by the a β. .

With the virtual work (3.9) as the starting point, the principles of virtual stress and of
virtual strain are formulated directly [24]. The above equations of compatibility and of
equilibrium follow from the respective principles, which, vice versa, are obtainable
from these equations.
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(4.5)

4. Shell-volume strain. Elasticity.

Two basic hypotheses (of Kirchhoff-Love) determine the strain and stress in the volume
of a thin shell in terms of the deformation of its reference surface:
(a) In the analysis of strain, particles comprising a straight line, normal to the middle
surface, can be assumed to constitute such a normal and to retain the distances between
them also after a deformation. (b) In the stress-strain relations, the stresses on the
sections parallel to the plane tangent to the reference surface can be disregarded.

These assumptions are known [12] to introduce errors which have the relative
magnitude order not exceeding that of the quantities:

(4.1)

Here η and 1/R are the maximum absolute values of the principal strain and of the
normal-section curvature; d denotes the distance to the shell edge; L is defined [5,
10, 12] as the minimum of intervals of variation L α  of any function F (x α), which is
substantial in the description of the stress and deformation:

(4.2)

The sign ~ indicates the equality of the magnitude orders.

The physical meaning of the Lα is clarified by a simple case
- The definition (4.2) gives in this case the intervals of variation: L1  = c , L2  = ∞ .

The hypothesis (a) renders for the radius vector R* of a point in the deformed volume
(R* has no direct relation to the 1/R ) , as well as for the deformed and for the rotated
local bases (g α *, g α ) of the three-dimensional metric the formulas:

(4.3)

The strain in the shell volume is defined and denoted by γα and γα β , determined
by the vector version of the standard Cauchy strain formula and the definitions (2.6),
(2.7) of Eα , ρα :

(4.4)

The term ∆αβ can in (4.5) be neglected. Its magnitude is of the order of γαβ η/ R ,
it does not exceed the error (4.1) of the basic hypotheses. Thus, the vectorial definition
(4.4) of the strain γαβ proves equivalent to the standard one - to

( If the z-term of ∆ αβ is retained, the formula (4.5) determines the γ αβ not as in (4.4)
by ραβ  = bα β’  – b αβ, but, with equivalent accuracy, by the bαβ  * – b αβ .)

The strain energy of a shell made of Hookean elastic isotropic material can, as a
consequence of the assumption (b), be determined solely in terms of the components
E αβ and ραβ of the strain vectors. The starting point for the derivation is provided by
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(4.6)

the (based on the assumption) formula from [5] for the energy, per unit area of the
reference surface

here the integral extends over the shell thickness, E and v denote the Young modulus
of elasticity and the Poisson’s ratio.

The definitions of gαβ , g αβ and g = det |gα β| let each of them to decompose into a
main term, identical, respectively, to aα β, a αβ and a, plus an additive of relative
magnitude of z/R , which is less than the the error (4.1) of the thin-shell theory. With
this in (4.6), the elastic-energy V also decomposes into a main term and an additive of
the negligible order of h/R. With this, formula (4.6) renders for homogeneous
material and the corresponding bounds of integration z = – h/2 and h/2 :

(4.7)

Thus, the elastic energy is directly determined by the components of the strain vectors

E α and ρα . It depends solely on the symmetric components: on E αβ = E β αof the

membrane strain and on the of the bending strain
(For nonhomogeneous and anisotropic materials the elastic energy may have to retain

also mixed terms - products of the membrane and bending strains. These terms can be
minimized by a choice of the reference surface [18].)

The elasticity relations follow from the equality of the virtual work δ W of the
inner forces to the corresponding variation of the elastic energy δV. With (3.9) and
(4.7), this renders

(4.8)

5. The standard theory of ‘quasi-shallow’ shells.

The relevant key work [10] justifies the Donnell-type theory by two assumptions:
The maximum absolute values of wall-bending strain hρ/2 and of middle-surface
extension η are assumed to have not too different orders of magnitude

(5.1)

The undeformed middle surface is assumed to be 'quasi-shallow' - to have small
Gaussian curvature K, compared with the square of the minimum interval of variation
L (defined in (4.2)):

(5.2)

The basic simplifications of the Donnell-type theory, justified in [10] by the
assumption (5.1), are:
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(i) In the tangential-forces equilibrium (3.4), all terms depending, directly or through
α3n , on the moments mαβ are disregarded. (ii) In the compatibility equations (2.12), all

terms depending, directly or through λβ, on the E αβ are neglected. (iii) The stress and
strain components nαβ, ρ αβ are set equal to their symmetric parts

. This means: the mαβ - terms in the equilibrium equations (3.7) and the
terms in the dual eqs. (2.15) are dropped.
After these simplifications, the equations (2.12), (2.15) and (3.4) , (3.7) become:

(5.3)

(5.4)

The assumption (5.2) justifies the interchange of the sequence of covariant surface
differentiation. This interchange directly makes the expressions

(5.5)

to a solution of the simplified equations of equilibrium and compatibility (5.3), (5.4).
The W(x

α
) and F ( xα) are three times continuously differentiable functions - the

curvature function, first proposed by A. Libai [6], and the Airy function. The term Pαβ

denotes a particular solution of the equations (5.4) .

The system of equations for the functions W and F , making these functions to a
general-solution of the Donnell-type theory, follows with (5.5) from the remaining
compatibility and equilibrium equations (2.13) and (3.5). The derivation of this
system consists of three steps:

(a) The λ β  and the nα3
are expressed in terms of Eαβ and m λα , by means of (2.14) and

(3.6). In turn, the Eαβ and m λα are represented, respectively, in terms of nαβ and ραβ

by means of the elasticity equations (4.8) and the relations from
(5.4), (5.3). (b) Inserting (5.5) leads to :

(5.6)

© With (5.6) and (5.5), the equations (2.13) and (3.5) render the system for the F
and W

(5.7)

(5.8)

Here , with ∇ ² denoting the two-dimensional Laplacian operator. The
Pαβ

-terms are not written out for the sake of simplicity.

Three questions are to be explored further : (1) Is the accuracy of the Donnell-type
theory dependent solely on the maximum absolute values of the bending and membrane
strain (hρ, η), or on the values of their specific components? (2) Can the basic
hypotheses and the error estimates be stated in any terms, which allow to assess,
whether the theory is adequate for a problem or not, before its solution has been
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obtained and evaluated?
criterion, besides that of shallow shape or curvature restriction?

(3) Can the theory be characterized by any physical

6. Accuracy of the Donnell-type theory

The errors of the theory involve the terms dropped, first, to obtain the simplified
equations of compatibility and equilibrium (5.3) and (5.4) and, second, to satisfy
these equations and the remaining ones (2.13) and (3.5) by the solution (5.5).

The relative error δλ of the compatibility equations (5.3) is equal to the relation of
the terms of (2.12) dropped in (5.3) to one of the terms retained there:

(6.1)

sum of terms of (3.4), dropped in (5.4), divided by one of the terms retained there. The
λ.

The application of the estimate (6.1) requires, besides the values of the strain resultants

γ
R

(6.2)

The relative error ∆λ of the equilibrium equations (5.4), has an estimate equal to the

formula for the ∆λ can easily be written out, it is dual to the expression (6.1) of δ

λ β and ραδ , an assessment of the covariant derivatives  ραδ ; β . Such derivatives with
respect to any of the coordinates x α

are commonly estimated by means of the
minimum interval of variation L defined as in (4.2). Further, the factors b α a re
assessed by the absolute maximum 1 /R of normal -section curvature 1/ α. T h i s
approach [10] leads, for instance, to :

Closer estimates than (6.1) can be obtained, when the terms with may be
dispensed with - when the xα -lines are the curvature lines, or follow these lines
approximately. For such coordinates the relative magnitude of the terms dropped in the
full equations (2.12) and (3.4) to obtain (5.3) and (5.4) can (generalizing on [18]) be
estimated by

(6.3)

(6.4)

where Rγ and Rβ denote the principal radii of curvature of the reference surface.

The estimates (6.3) and (6.4) indicate an answer to the question (1) of the Sect.5. -
The error of the Donnell-type theory depends not on the maximum absolute values of
wall-bending strain, middle-surface extension and curvature ( h ρ /2 , η and 1/R). It is
determined by the relations of specific components: and on 1/ Rα .

- The components of strain and of stress in the shell volume have to be of mixed
nature. The part of a component (e.g., of γαβ ), which corresponds to membrane
resultants, and its part determined by bending and torsion, must not differ too much
in their magnitudes. Thus, the first basic assumption of the theory has to be stated
more specifically than in (5.1). The actual approximation of the theory depends on the
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restriction of relations of bending and membrane parts of the same component. - The
validity of the theory depends on the conditions for the δλ  , ∆λ defined in (6.3), (6.4):

(6.5)

However, the error estimates according to (6.3), (6.4) have a serious drawback. - They
depend on the values of the stress and strain resultants. This means, the applicability of
the theory and its accuracy, can be checked for a problem only, after a specific
solution of this problem has been obtained and the resultants fully evaluated. The way
to avoid, or at least to minimize, this requirement and also to obtain the clarification of
the above questions (2) and (3) is suggested by the general solution (5.5).

The error estimates not directly depending on the resultants of stress and strain will
be obtained by eliminating all the resultants from the formulas
(6.3), (6.4) of δλ and ∆λ . This elimination hinges on the use of the general solution W,
F ; it consists of two steps. First, the estimates δλ and ∆λ_ will be, expressed in terms
of the W and F. Second, the dependence of the estimates on the functions W, F will
be, represented by the dependence on the intensity of variation (1/ Lα) of the stress
state.

Both steps entail an assessment of the derivatives of W and F with respect to
coordinates xα. It is indispensable, thereby, to take into account that the stress state
can vary with the coordinates x1 and x 2 with different intensities. - The derivative with
respect to a coordinate xα has to be estimated not by the L = min L α , as in the
standard relations (6.2), but by the interval of variation Lα with respect to the specific
coordinate xα . In the following the covariant derivatives will be estimated by Lα -
according to the formula:

(6.7)

With this, the stress and strain resultants in the estimates (6.3), (6.4) of δ λ , ∆λ can
be assessed in terms of W, F - not in terms of their derivatives.
To eliminate from the estimates δλ , ∆ λ the functions F and W , it remains to

estimate the relation between them. This is done with the help of the equations (5.7)
and (5.8). These provide relations between the ∇4 F or ∇ 4 W and the W or ,
respectively, F in the second term of the relevant equation. As ∇ 4F  and ∇ 4 W are
invariants, the second terms of (5.7) and (5.8) must also be invariants. - They may be
estimated for lines-of-curvature coordinates xα . The relevant order-of-magnitude
estimates, following with (6.7) from (5.7) and (5.8) , respectively, are:

(6.8)

Here L β
β denote the intervals of variation, defined by (6.7), for the case, when the x

-lines coinside with the curvature lines ; is the smaller of the quantities
and

The elimination of the stress and strain components from the error estimates (6.3),
(6.4) can now be completed. - With E αβ

αβ and n represented in in terms of F , the
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(6.10)

(6.9)

 ρα β and m αβ - in terms of W , the estimates (6.3), (6.4) depend on |  F/W | a n d

⏐ W/F ⏐. This and (6.7), (6.8) results in the estimates of the errors ∆ λ  , δ λ , which
depend only on the intensities of variation (1/ L α) and on the local geometry  (Rα):

A remarkable consequence of the duality - the estimate of the error in the equilibrium
(∆λ ) and that in the compatibility (δ λ) have equal orders of magnitude.

Another cause of inaccuracy in the Donnell-type theory is the approximation of the
components ρ αβ  and n αβ by the symmetric parts 'ραβ a n d  'nαβ of the respective
tensors - the relations (5.3), (5.4). This amounts to an approximation in the equations
(2.15) and (3.7). The estimates of the corresponding relative errors, determined
similarly to (6.9), are:

Finally, the error of the theory is caused by the interchange of the sequence of
covariant surface differentiation, required to satisfy (5.3), (5.4) by (5.5). The estimate of
this error can be found to be somewhat lower than in (5.2), where the intervals Lα  ≥ L
are replaced by L. However, this error, just as the one assessed in (6.10), is under those
( ∆λ , δ λ) of the other basic simplifications, estimated in (6.9). - These errors are of no
significance for the overall accuracy of the Donnell-type theory.

The characteristic feature of the error estimates (6.9), (6.10) : they do not directly
depend on stress and strain variables. - The accuracy of the theory and its adequacy for
a problem can in certain cases be assessed even before a solution for the problem has
been obtained and evaluated (cf. an example in §7).

7. Physical significance of the assumptions and the domain of the theory.

The physical meaning of the assumptions shaping the theory is made more
transparent by the simpler estimates, which follow from (6.9). - After a rather direct
analysis these error estimates can be reduced to a telling form:

(7.1)

Hence, in what concerns the accuracy of the Donnell-type theory, any stress state and
local shape are characterized by merely two dimensionless parameters - by the relations
of the intervals of variation Lα along the lines-of-curvature xα to the corresponding
principal curvature radiuses Rα .

The above estimates show the theory to be adequate for stress states which vary with
both coordinates x α much more intensely than the unit normal vector n. Indeed, the 1/
Lα is the intensity of variation of the stress state, the curvature 1 / Rα represent the
intensity of variation of the n .

It has to be noted, finally, that the above estimates rate partial errors of specific
equations, which are dual one to the other. - These errors may, to some extent,
compensate each other.
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A simplified theory is adequate to the general one, when the error of its additional
assumptions does not exceed the error of the thin-shell theory, displayed in (4.1), that
is, when Thus, the estimate (7.1) defines problems, for which the
Donnell-type theory is adequate, by the conditions

In other words, the theory does not involve any additional inaccuracy by treating
stress states which vary along the reference surface at least - times more
intensely, than the unit normal vector n (which indicates the direction of the tangent
plane). It is a theory specialized for the strongly variable stress states [18].

The relations (7.l), (7.2) make it quite plain: the applicability of the theory of ‘quasi-
shallow’ shells depends, not alone on the shell shape, however shallow it may be.

An example. To demonstrate the reach of the theory and the use of its error-estimate,
consider a most simple limit case, discussed by L.H.Donnell himself [3].

Consider an infinitely long cylinder with closed circular cross section,
buckling under radial pressure. As easily perceivable, the buckling mode is

The estimate (7.1) of the error is for this mode
The classical formula gives the critical pressure: The Donnell-type

theory renders (e.g., [16]) which is 33% above the correct p. - As
predicted by estimate (7.l), this case is, out of reach of the theory.

(7.2)
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Abstract

In this investigation, experiments carried out to measure interface frac-
ture properties of joined materials are reviewed. In particular, results from
tests carried out by means of the Brazilian disk specimen and two material
pairs are presented. An energy based fracture criterion is exploited which
agrees well with the experimental results. Scatter in test results for interface
toughness is discussed.

1. Introduction

There have been many studies investigating the fracture properties of a
crack along an interface between two materials. Two approaches have been
taken. In the majority of studies, two materials are bonded by an interlayer.
There have been few studies in which the two materials are joined without
an interlayer. Investigations in the literature will be described in Section 2.

For completeness, relevant concepts related to interface fracture are pre-
sented. These may be found in other sources, as well. In two dimensions
and referring to Fig. 1, the in-plane stresses in the neighborhood of a crack
tip at an interface are given by

(1)

where , the complex stress intensity factor

(2)

D. Durban et al. (eds.), Advances in the Mechanics of Plates and Shells, 49–66.
© © 2001 Kluwer Academic Publishers. Printed in the Netherlands.
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Figure 1. Crack tip coordinates.

and the oscillatory parameter

(3)

In (3), µ i are the shear moduli of the upper and lower materials, respec-
tively, ki  = 3 – 4vi for plane strain and (3 – vi )/(1 + v i ) for generalized

plane stress, and vi  are Poisson’s ratio. The stress functions and
are given in polar coordinates by Rice, et al. (1990) and in Cartesian coor-
dinates by Deng (1993).

The complex stress intensity factor in (2) may be written in non-dimen-
sional form as

(4)

where L is an arbitrary length parameter and σ is the applied stress. The
non-dimensional complex stress intensity factor may also be expressed as

(5)

so that the phase angle

(6)

The interface energy release rate Gi is related to the stress intensity factors

by

(7)
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where

(8)

for plane strain conditions and Ei  for generalized plane
stress. Note that the subscript i in (7) represents interface and Gi has units
of force per length.

Inherently for any interface both K 1 and K 2 must be prescribed or
equivalently Gi and ψ . In describing an interface crack propagation criterion,
one may prescribe a relation between K1  and K2 or what is commonly done,
the critical energy release rate Gic  is given as a function of the phase angle
ψ .

Figure 2. Bimaterial Brazilian disk specimen.

In Section 3, test results are presented which were obtained by means
of the bimaterial Brazilian disk specimen (see Fig. 2). The Brazilian disk
specimen shown in Fig. 2 was chosen for measuring the interface fracture
toughness Gi c because it leads to a wide range of mixed mode values. Two
material pairs were selected for these tests: (a) glass and epoxy and (b) two
ceramic clays (K-142 and K-144). In each case, a mathematical interface
is achieved since there is no apparent interlayer between the materials. An
energy based fracture criterion is employed and shown to describe well the
experimental results. The scatter in the experimental results is examined.

2 . Experimental Results

In this section, experimental techniques and results presented in the litera-
ture will be considered. The majority of experiments have been carried out
on sandwich specimens. A smaller number of tests have been performed on
bimaterial specimens without an interlayer.
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Figure 3. Specimens containing bonds employed to measure interface fracture toughness.

2.1. SANDWICH SPECIMENS

The specimens exhibited in Fig. 3 are those for which two materials have
been joined by means of an interlayer of another material. In some cases
the adherends are of the same material; for others, they are of different
materials.

Charalambides, et al. (1989) presented a notched four point bend spec-
imen containing symmetric interface cracks (the so-called Santa Barbara
specimen, see Fig. 3a). A strip of aluminum and PMMA were bonded to-
gether using epoxy. Although the epoxy interlayer should not have been
neglected, the experiments were considered to measure interface tough-
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about 5° (Suo and Hutchinson, 1989).
In a study by Cao and Evans (1989), the three specimens illustrated in

ness between the aluminum and PMMA. The specimen (without the epoxy
interlayer) was analyzed by means of the finite element method. For a con-
stant ratio of h1 / h2 , the energy release rate, non-dimensionalized complex
stress intensity factor and phase angle are constant for a wide range of crack
lengths. Thus, this specimen produces a steady state value for Gi. The phase
angle is not very sensitive to variation of the thickness ratio h1 / h2 . Tests
were carried out with 1.19 ≤ ψ ≤ 1.29. It was concluded that testing of
other specimens is necessary to obtain a wider range of mode mixity. It
should be noted that the epoxy layer does not greatly influence the value of
the interface energy release rate, but it does change the phase angle which
was calculated by means of the finite element method. For example, for
the geometries considered, an interlayer thickness of 25 µm, change ψ by

Figs. 3a through 3c were employed to measure the critical interface energy
release rate G ic as a function of the phase angle ψ. Approximate analytic
expressions for the interface energy release rate were developed for each
specimen. Whereas the phase angle ψ was obtained for long crack lengths by
means of the finite element method. The flexure and asymmetric specimens
in Figs. 3a and 3b, respectively, were made from aluminum glued to glass.
The axisymmetric fiber/matrix specimen was fabricated from a glass fiber
glued to a glass matrix. The glue was a thermoplastic adhesive. Results were
given for the crack propagating between the glass and glue and between the
aluminum and glue. It was seen that the critical interface energy release
rate as a function of phase angle was much greater for the glass/adhesive
interface than the aluminum adhesive interface.

Wang and Suo (1990) employed a Brazilian disk sandwich specimen
illustrated in Fig. 3d composed of aluminum, brass, steel and perspex sub-
strates bonded by an epoxy adhesive. It was hypothesized that residual
stresses in sandwich specimens do not influence the measured toughness
values unless they are excessively high. This is something which should be
examined further. For a sandwich specimen in which the layer is thin com-
pared to other in-plane geometric length scales, the interface energy release
rate is that of the same homogeneous specimen. The phase angle, however,
changes as

(9)

where KI and K II  are, respectively, the mode I and II stress intensity fac-
tors of the homogeneous specimen, ω is tabulated by Suo and Hutchinson
(1989) and depends on the interlayer/substrate material mismatch, ∈ is the
material parameter given in (3), L is the length parameter associated with
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and h is interlayer thickness. All systems exhibited the typical increase
in critical interface energy release rate Gic with increasing phase angle .
There was much scatter in the results. It was observed that large phase
angles caused the epoxy to debond from the upper adherend. When the
remote loading was predominately mode I (θ = 0), the crack tended to
kink out of the interface and propagate cohesively (within the interlayer).

Reimanis, et al. (1991) studied the micromechanical behavior of a
metal/ceramic interface in which a gold foil was bonded between two single
crystal alumina (sapphire) layers. The gold foil of thickness between 10 to
100 µ m was diffusion bonded to the alumina creating a mathematical in-
terface between the gold and sapphire. The flexure specimen in Fig. 3a was
employed with a mode mixity ~ 0.79. Tests were performed in a dry ni-
trogen environment. The critical interface energy release rate, as well as the
resistance Gi R were determined as a function of gold interlayer thickness.
The behavior of the gold interlayer was carefully examined. The mecha-
nism of fracture was plastic void growth from pre-existing interface pores
accompanied by brittle interface debonding. Bridging ligaments account for
the increase of resistance as the crack propagates. Crack propagation was
along one of the gold/sapphire interfaces.

In 1991, Kinloch, et al. carried out tests on three specimen types. These
included a single edge notched (SEN) specimen fabricated from an epoxy
adhesive, a bimaterial single edge notch (SBM) specimen fabricated from
epoxy and aluminum (see Fig. 4a) and a tapered double cantilever beam
(TDCB) specimen (see Fig. 3e) in which two aluminum substrates are glued
by a 0.5 mm thick epoxy interlayer. Critical energy release rate measure-
ments were made for the epoxy, post cured at five temperatures. The results
showed that the critical energy release rate was essentially the same for the
SEN specimen made only from epoxy, the TDCB specimen (the crack grew
cohesively–within the epoxy layer) and the SBM specimen when the crack
grew out of the interface and into the epoxy. In all three cases, it appears
that the bulk fracture toughness of the epoxy was measured. It may be
noted that the crack was growing by means of mode I deformation in the
TDCB specimen. The residual stresses in the SBM specimens were observed
by photoelastic means. They were seen to increase with post-cure tempera-
ture. Approximate values for the energy release rate due to residual stresses
were calculated and superposed with those values due to applied force. The
phase angle was not determined. It was seen that the residual stresses
greatly affect the critical interface energy release rate values obtained with
the SBM specimens.

Akisanya and Fleck (1992) investigated the effect of applied mode mix-
ity φ = arctan on crack path within a brittle epoxy layer between
two aluminum alloy substrates. Two specimens were employed in the test-
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ing: a symmetric (h1 = h2 ) and asymmetric double cantilever beam (DCB)
specimen illustrated in Fig. 3b and a Brazilian disk specimen illustrated in
Fig. 3d. For the DCB specimens φ varied between -0.42 and 0.42 radians;
for the Brazilian disk specimens 0.4 ≤ φ ≤ 1.34. For both specimens, the
starter crack was placed along the upper interface of the joint. For the DCB
specimens, the interfacial mode of growth is the most frequently encoun-
tered for small φ and becomes the only mode observed at large absolute
values of applied mode mixity. The local mode mixity for the crack tip which
propagated in the Brazilian disk specimens varied from –0.05 ≤ ψ ≤ 1.52.
The crack was interfacial when 0 ≤ ψ ≤ 0.35. For the DCB specimens, three
joint thicknesses (0.2, 0.4 and 0.6 mm) were studied. For these specimens,
four different cure regimes were employed inducing different residual stress
levels into the epoxy layer. It was concluded in this study, that the residual
stresses did not affect the toughness results for interface crack propagation.
For both specimen types, the interface toughness increased with increasing
| ψ |. For serrated or alternating propagation, the toughness results increased
slightly with increasing residual stresses. The probability of serrated crack
growth increased with increased layer thickness. Cohesive propagation oc-
curred when the remote mode II stress intensity factor was small. In this
case, the measured toughness was comparable to that of the bulk toughness.
This crack path did not seem to be affected by layer thickness or residual
stress level. The local cracking pattern of the adhesive joint greatly affects
the measured toughness. For the serrated and alternating crack paths, the
toughness is more than twice that of the interfacial toughness. Duer, et
al. (1996) raised some doubts about the calibration equations for Gi  a n d
the phase angle ψ which the authors obtained from Bao, et al. (1992) and
Suo and Hutchinson (1989) for the DCB specimens. On careful reading,
it appears that Akisanya and Fleck did interpret these formulas correctly
and that their results are sound. The usual behavior of Gi c increasing with
increase of |ψ | is observed. The results presented by Duer, et al. (1996)
exhibit no dependence on phase angle.

Liechti and Liang (1992) employed the strip blister specimen exhibited
in Fig. 3f for two types of tests. In one there is an interlayer of epoxy
between an upper layer of glass and a lower layer of aluminum. In the sec-
ond, the lower layer is comprised of epoxy only (see Fig. 4c). The surface
preparation of the adherends was such that debonding occurred between
the glass and epoxy in all cases. Curing took place at room temperature for
seven days in order to minimize residual stresses. The interface energy re-
lease rate Gi was determined from beam theory. Finite element studies with
an M -integral post processor were carried out to obtain the phase angle
ψ. The energy release rate was also obtained and compared well with the
expression from beam theory. For the sandwich specimen, the phase angle
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remained nearly constant as crack length increased, although it increased
as the thickness of the epoxy interlayer decreased (from about -0.70 radians
to -0.64 radians). The values of G ic decreased for thinner epoxy interlayers.
The results showed a much more brittle behavior. For the two thickest lay-
ers of 0.61 mm and 0.356 mm, an R -curve behavior was observed. Behavior
of the plastic zones may qualitatively explain the increase of toughness
with increasing interlayer thickness and crack length for the thicker layers.
It may be that the aluminum layer is disturbing the assumed asymptotic
interfacial behavior between the glass and epoxy for the thinner interlayers.
One of the conclusions here is that different sandwich specimens may pro-
duce different results. But they yield very different values as compared to
bimaterial specimens, so that one must be careful in using data from these
tests. Finally as mentioned by the authors, for design purposes, it would
appear that the sandwich layer thickness in a testing environment should
match that of the engineering application.

Thurston and Zehnder (1993) tested silica/copper sandwich specimens
exhibited in Fig. 3g by means of the loading frame shown in Fig. 3h. A
0.127 mm layer of copper foil was hot pressed between two pieces of fused
silica. The crack was interfacial between the silica and copper. Crack propa-
gation was unstable in all cases. For positive phase angles, the crack kinked
into the ceramic. For moderately negative phase angles, the high toughness
of the metal tended to promote interface fracture. For large negative phase
angles, fracture was observed to occur in the ceramic before the interfacial
toughness was reached. Since an interlayer was considered here, the inter-
face energy release rate was obtained from that of a cracked, homogeneous
specimen of the same geometry and loading. The phase angle was deter-
mined from the relation between global and local stress intensity factors
(see Suo and Hutchinson, 1989). In addition, a plastic analysis was pre-
sented, to account for the plasticity of the copper layer. In the tests, small
scale yielding occurred for 12 out of 20 specimens. Critical interface energy
release rate values were plotted versus the plastic phase angle. It was ob-
served that G ic  increased with increase of the absolute value of phase angle.
This phase angle varied between -0.31 and 0.66 radians. The difference be-
tween this phase angle and ψ for L equal to the layer thickness is no more
that 0.05 radians. Much scatter in the results is observed. Of course, there
were two types of fracture behavior: interface and kinking into the ceramic.

For the same specimen geometry and loading (Figs. 3g and 3h) in which
nickel foil was hot pressed between alumina adherends, Thurston and Zehn-
der (1996) carried out tests. The effect of residual stresses was considered
here. Since there is an order of magnitude difference between the thermal
expansion coefficients of the two materials, residual stresses in the interlayer
will result. Numerical analyses were carried out which showed that resid-
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ual stresses exist which change the G icvalue by as much as 20% and the
phase angle by as much as 40%. There is scatter in the test data. A max-
imum hoop stress criterion matches the data fairly well. As expected the
toughness increases with increasing mode mixity. In this paper the authors
demonstrate an important point. The length parameter L in (6) should be
chosen within the K -dominant region when employing test data for failure
prediction.

Wang (1995) employed the Brazilian disk sandwich specimen exhibited
in Fig. 3d; the interlayer was taken to be copper and the semi-circular
adherends were alumina. A non-planar notch was induced by means of
a graphite layer about 20 nm thick. The non-planar notch enabled both
cracks to have the same mixity. Cracks grew along the interface between
the copper and alumina. Specimen calibration (i.e. determination of the
interface energy release rate and phase angle) was carried out as in Wang
and Suo (1990). The interface fracture toughness is seen to increase as
⏐ψ⏐ increases. There were few experimental results; had there been more,
it appears that there would be large scatter. It was observed that there
was no large scale plastic deformation of the copper. It was assumed that
residual stresses are unimportant for this testing situation. Wang does note
that residual stresses can have an effect on the K solutions which in turn
will influence the toughness results. Plasticity and surface roughness were
assumed to cause the increase of Gi c with ⏐ψ⏐.

Test were carried out by Turner, et al. (1995) on the specimen in Fig. 3i.
It was composed of either glass adherends bonded by a thermoset resin
or sapphire diffusion bonded with a 25 µm thick layer of platinum or a
10 µm thick layer of gold. The phase angle for all tests was between about
0.02 and 0.09 rad. For the glass thermoset, G was found as 24 ± 4 N/m,ic

whereas the critical energy release rate of the glass is about 8 N/m. For the
sapphire/gold specimens G ic  = 10 ± 2 N/m and for the sapphire/platinum,
it is found to be about 52 N/m. The toughness of sapphire is between
10 and 20 N/m. The specimen employed allows measurement of fracture
toughness for interfaces which are tougher than the adherends.

Experiments were conducted on scarf joints (see Fig. 3j) by Wang (1997)
in which a brittle epoxy was used to bond two steel adherends. The bond
was formed at six different angles between zero and π/2. The thickness of
the adhesive layer was between 0.15 and 0.2 mm. An artificial crack was
formed by a thin piece of Teflon tape. It was observed that the crack ran
within the adhesive. It is rather unusual for such a wide range of mixity.
Perhaps the T-stress term is negative for this specimen and all loading
angles (see Fleck, et al, 1991). A fracture criterion was considered for the
case of a crack within an interlayer.

Another sandwich specimen (see Fig. 3k) was employed by Swadener
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and Liechti (1998). Here the upper material was glass and the lower material
aluminum with a thin epoxy bond between them. The bond thickness was
between 0.13 and 0.40 mm. The residual stresses in the epoxy were observed
by a polariscope to be very small. A combination of displacements in the
horizontal and vertical directions was applied to the specimen so that the
phase angle ranged between -0.87 and 1.48 radians. An analytical expression
for the interface energy release rate was found. For the phase angle, finite
element analyses were carried out. Finite element analyses were employed
to determine the plastic work. It was observed that this contribution to the
critical interface toughness is asymmetric.

Figure 4. Bimaterial specimens employed to measure interface fracture toughness.

Another approach has been taken in the literature in order to study
interface fracture. In this case, two materials are bonded together without
an interlayer. As mentioned earlier, Kinloch, et al. (1991) employed the
specimen illustrated in Fig. 4a to measure interface toughness between an
aluminum alloy and epoxy. They considered the effect of residual stresses
by post-curing the specimens at temperatures of 20°, 45°, 80°, 120° and
150° C. For the lowest temperature, the crack immediately diverted into
the epoxy, and the measured fracture toughness is in close agreement with
that reported earlier for bulk and cohesive crack growth in a specimen with
an epoxy interlayer. For the other temperatures, the crack propagated along
the interlayer and the critical interface energy release rate was much lower.
Photoelastic studies showed an increase in residual stress with increase
of post-cure temperature. The effect upon Gi of the residual stresses was
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phase angle ψ was not noted.

calculated. When superposed with the interface energy release rate resulting
from the applied load, this critical value was not a function of crack length
for the two highest curing temperatures. The dependence of Gic upon the

In two studies by Liechti and Chai (1991, 1992), experiments on glass/e-
poxy specimens illustrated in Fig. 4b were reported. Displacements in the
horizontal and vertical directions are imposed to produce a wide range of
mode mixity. The specimens were cured at room temperature. Photoelastic
observation showed no evidence of residual stresses. The energy release
rate and mode mixities were obtained by means of finite element analyses.
Tests were carried out with –1.05 < ψ < 1.57. The results were obtained
from four specimens and showed little scatter indicating consistent adhesion
between specimens. The critical interface energy release rate increased from
about 3 N/m to more than 35 N/m as ⏐ψ⏐ increased. The plastic zone within
the epoxy was determined by means of finite element analyses and seen
to be within the realm of small scale yielding. Larger plastic zones were
observed as ⏐ψ⏐ increased. An estimate of the contribution of plasticity and
viscoelasticity effects to the fracture toughness increased with increasing
⏐ψ⏐, but did not quantitatively account for the increase in toughness. The
surface roughness model of Evans and Hutchinson (1989) did not seem to
correlate with the toughness data.

Liechti and Liang (1992) employed the bimaterial strip blister specimen
in Fig. 4c in which the upper material was glass and the lower was epoxy.
Details of specimen preparation and calibration are described earlier. In
these tests, the phase angle changed from about -1.06 to -0.93 radians,
remaining constant as crack length increased. The critical interface energy
release rate values G ic increased with crack length demonstrating an R -
curve behavior. The authors could not seem to attribute it to plasticity. It
seems to occur with this type of specimen as also observed for a circular
blister specimen employed by Liechti and Hanson (1988), as well as the
sandwich specimens also tested here.

Cazzato and Faber (1997) employed the specimen shown in Fig. 4d to
determine the toughness of a glass/alumina interface. With the specimen
geometry chosen, the phase angle varied between 0.77 and 0.84 radians.
The glass was melted onto the alumina to create a direct bond between
the materials. The thermal mismatch between the glass and alumina is suf-
ficiently low so as to prevent failure of the specimens during processing.
Precracks grew from a machined notch in the top of the glass layer. Five
types of alumina were employed to examine the effect of alumina purity on
interface toughness. Five different surface roughnesses were induced on the
ceramic layers. Testing took place in three different testing environments of
nitrogen gas, liquid water and ambient air. Residual stresses were accounted
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for. For the lowest purity alumina, the crack did not propagate along the
interface but crossed it, breaking the alumina. For the other alumina types,
the interface fracture toughness increased with decreasing purity. There was
much scatter in the results. It would appear that an alumina with a moder-
ate amount of glassy phase is the ideal for enhancing debonding. Interface
roughness did not seem to affect the toughness values. It did however, cause
the crack to propagate near the interface within the glass. One type of alu-
mina bimaterial specimen was tested in the different environments. It was
found that interface toughness was lowest in water and highest in nitrogen.
The liquid environment lowered the toughness by about 30% from the air
environment. The limited phase angle range achieved here indicates the
need for a specimen which allows for a wider range of this quantity.

The specimen exhibited in Fig. 4e was employed by Ikeda, et al. (1998)
with the angle α taken as 0°, ±45° and ±60°. The upper material was
either aluminum or methacrylic resin and the lower material was epoxy. The
amplitude of the stress intensity factor and the phase angle were presented,
each as a function of crack length. For each material pair, graphs of  vs.

with a length parameter L chosen were presented. It was observed that
for the proper choice of L, the experimental values could be fit between two
bounding ellipses.

Sundararaman and Sitaraman (1999) employed three bend type spec-
imens exhibited in Figs. 4f through 4h to measure the interface fracture
toughness between aluminum and epoxy. The application is for electronic
packaging. It was assumed that residual stresses are negligible. For the
specimen in Fig. 4f, the critical interface energy release rate was related to
the change in energy obtained for two different crack lengths. The phase
angle value for tests with several crack lengths was found from an ana-
lytic/numerically based expression as 0.41 radians. For the specimens in
Figs. 4g and 4h, a compliance calibration method was employed to relate
the critical interface energy release rate to the critical load and crack length
at fracture. Two experiments were carried out with the specimen in Fig. 4g;
one with the aluminum as the upper material and one in which it was the
lower. In the first case, ψ was negative with a value of -0.76; in the sec-
ond case it was determined as 0.83. For the specimen in Fig. 4h, the phase
angle of the test was found to be 1.23 radians. Comparison was made be-
tween G ic  values obtained experimentally and those found from analytic
approximations, as well as finite element analyses.

It may be seen that it is difficult to obtain a wide range of mode mixity
from one specimen. In the next section, results obtained for bimaterial
Brazilian disk specimens are reported. This specimen produces a wide range
of mode mixity.
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Figure 5. Bimaterial Brazilian disk specimen composed of glass and epoxy.

3. Bimaterial Brazilian Disk Specimens

Critical interface energy release rates were obtained by Banks-Sills, et al.
(1999a, 1999b) with the Brazilian disk specimen exhibited in Fig. 2 for two
material pairs: glass/epoxy and two ceramic clays (K-142/K-144). Material
parameters for each pair are presented in Table 1.

TABLE 1. Some properties of materials stud-
ied.

material E (GPa) v α(10 – 6 / ºC)

glass 73.0 0.22 8.0
epoxy 2.9 0.29 73.0
aluminum 70.0 0.33 23.5
K-142 19.5 0.29 6.01
K-144 23.3 0.20 5.38

As illustrated in Fig. 5, the glass/epoxy specimens have a thin alu-
minum arc about the epoxy in order to reduce tensile residual stresses at
the interface edges. It may be noted that the oscillatory parameter ∈ for
the glass/epoxy pair is -0.088 and for the ceramic clay pair is -0.00563.

Finite element analyses (Bathe, 1995) were carried out on both specimen
pairs in order to obtain calibration equations relating the stress intensity
factors, the applied load, specimen geometry and material properties. In
addition, the effect of residual stresses upon the stress intensity factors was
also accounted for. For details, see Banks-Sills, et al. (1999a, 1999b).
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(10)

Figure 6. Interface fracture toughness as a function of phase angle ψ  for (a) glass/epoxy
and (b) bimaterial ceramic clay specimens.

Results for the critical interface energy release rate Gic as a function of
phase angle ψ for each material pair are exhibited in Fig. 6. Experimen-
tal details may be found in Banks-Sills, et al. (1999a, 1999b). The usual
behavior is observed for both material pairs in which Gic increases as | ψ |
increases. In addition, an energy based crack growth criterion is exhibited
in Fig. 6 as a solid line. For each material pair, the length parameter L in
eq. (6) was chosen so that the test results are approximately centered with
respect to ψ = 0. For the glass/epoxy pair, L = 600 µ m, whereas for the
ceramic clay pair L = 100 µ m. As noted by Thurston and Zehnder (1996),
the length parameter L should be chosen within the K-dominant region
when employing this data for failure prediction. Since for the ceramic clay
pair, the value of of ∈ is very small (-0.00563), the test results may be centered
with 100 µm ≤ L ≤ 1000 µm. This change in L shifts the graph by less than
1° or 0.013 radians. The shift is obtained from

where ψ 1 = 0. Since both materials are very brittle, it may be assumed
that the length L = 100 µ m is within the K -dominance region. For the
glass/epoxy pair, an estimate of the plastic zone size, as well as finite el-
ement analyses to determine the K-dominance region (see Banks-Sills, et
al., 1999c) showed L = 600 µm to be within this zone.

Several fracture criteria presented by Banks-Sills and Ashkenazi (1999c)
were compared with experimental data from tests on both material pairs.
One of the energy release rate fracture criteria presented there is employed
in this study. This criterion is given by

(11)
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where and  In fact, G1  is the
value of Gic  when ψ = 0. Before applying this criterion, the test values
are centered about ψ = 0. For each material pair, G1  is determined as
explained in Banks-Sills and Ashkenazi (1999c). For the glass/epoxy pair,
G1  = 5.1 N/m; for the ceramic clay pair G1  = 3.7 N/m.

For all experimental results in which there is a wide mixity range the
interface toughness Gic  increases as |ψ | increases. In experiments by Liechti
and Chai (1992) on glass/epoxy bimaterial specimens, analyses were carried
out to assess the effect of plastic and viscoelastic deformation upon values
of Gi c. It was shown that these do not contribute sufficiently to explain the
steep increase in the toughness values. However, employing a cohesive zone
to model the plastic zone in front of the crack tip in a sandwich specimen,
Swadener and Liechti (1998) showed that plastic deformation is sufficient
to increase Gi c when shear deformation increases.

It may be observed in Fig. 6 that there is much scatter in the test data
for both data sets. For both bimaterial and sandwich specimens employed
in other investigations in which a wide range of mixity was achieved, scatter
may also be observed. Only tests carried out by Liechti and Chai (1992)
exhibited little scatter. In that study, only four specimens were employed to
obtain the data. This minimized the difference in surface finish and joining
conditions from specimen to specimen.

In this study, finite difference calculations were carried out on ceramic
clay specimens to assess error induced in Gi and ψ for a variation in the
applied loading angle θ. For several of the load angles, these values were
calculated for a difference of ±0.5°. These are presented in Table 2. It
may be observed that the percentages obtained for Gi are rather small. For
θ = 2°, ψ is approximately -0.5 radians. If the load angle is 1.5°, ψ will
be about -0.45. This change will hardly be discerned in Fig. 6b. Hence, it
appears that the scatter resulting from load angle error is small.

TABLE 2. Percent change in G i c  and
ψ for loading angle change of ± .5°.0

θ Gic ψ

15° -2.5%/2.5% -2.1%/2.l%

10° -2.8%/2.8% -3.2%/3.2%

2° -3.6%/2.1% -9.0%/6.8%

-15° -2.2%/2.1% -3.6%/3.7%

Next, for the ceramic clay specimens, the deviations of the observed
Gic  values (test data) from the theoretical curve in eq. (11) were examined
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statistically. The X2  goodness of fit test was applied to the observed de-
viations assuming they are normally distributed experimental errors. The
X2  statistic is computed to be 4.0 which is less than X2

0.5 = 5.99 with two
degrees of freedom. Thus, the normal distribution provides a satisfactory
fit to the deviations. Furthermore, the correlation between the errors and
the ψ values was |R | = 0.09. This is considerably lower than a value of 0.45
at the 1% level of significance. Hence, it may be assumed that the errors
and ψ values are independent.

4. Summary and Discussion

Many studies have been reviewed on the subject of fracture toughness of
interface crack propagation. Two types of specimens are studied: a bima-
terial specimen and a sandwich specimen. Interface behavior between the
two specimen types, as well as sandwich specimens with bonds of differ-
ent thicknesses, may be different and the test should be tailored to the
application.

In some early investigations, the stress intensity factor phase angle ψ was
not necessarily noted. More recent studies have presented results for a wide
range of mode mixity. For those studies, the critical interface energy release
rate Gic  increases with increasing |ψ |. In one study with sandwich specimens
this increase in toughness was quantitatively attributed to increased plastic
deformation with greater phase angle (see Swadener and Liechti, 1998).

With sandwich specimens, it was observed that crack path may change;
that is, a crack along the interface between the adherend and joining layer
may not remain along the interface. An excellent study examining the fac-
tors which contribute to these changes was presented by Fleck, et al. (1991).
According to that study, the crack path depends upon the sign of KII  a n d
the T-stress.

The residual stresses created by the material mismatch has not been
taken into consideration in all studies. It has been seen in some studies,
that when they exist, they can significantly influence the critical quantities.
Hence, it is concluded here that this factor should be addressed.

In many studies in which a wide range of mode mixity is attained there
is much scatter in the Gic  values. For a series of tests on ceramic clay
Brazilian disk specimens, statistical analyses were carried out on the data.
It was found that the deviations of the experimental data points from the
Gic  criterion very nearly satisfy the standard Gaussian distribution of errors.

Finally, because of space limitations, there are many other studies which
have not been mentioned. Some of them include Dalgleish, et al. (1989),
Charalambides, et al. (1992), Chen, et al. (1999), Jiao, et al. (1998), Smith,
et al. (1993), Swadener, et al. (1999), as well as others.
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SOME REFINEMENTS IN ANALYSIS

OF THICK-WALLED TUBES IN AXIAL BENDING

CHARLES W. BERT
School of Aerospace and Mechanical Engineering
The University of Oklahoma
Norman, Oklahoma 73019-1052 USA

Abstract

This paper investigates analytically certain refinements in the nonlinear analysis of
tubes undergoing axial bending, with emphasis on thick-walled effects: axial moment of
inertia, circumferential bending and membrane action, and higher-order terms in angular
position.

1. Introduction

There have been dozens of analyses devoted to elastic tubes subjected to axial beam
bending with cross-sectional deformation. However, most of them have been based on the
same assumptions as those used by Brazier (1927), namely:

(1)
(2)
(3)

(4)

.

Shear deformation due to bending is omitted.

The cross-sectional deflection is of the form cos2θ

The shell is constructed of homogeneous and isotropic material.
The shell material is linearly elastic.
Negligible local shell buckling occurs.
Cross-sectional deflection is symmetric about both the horizontal and vertical axes
of the cross section.

Deflections are uniform along the length, i.e., the shell is infinitely long.
Circumferential extension of the shell middle surface is neglected.
Axial shell bending is neglected.

The thin-walled shell assumption is made.

(5)
(6)
(7)
(8)

(9)

(10)
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Hypothesis no. 1 was removed in analytical investigations by Axelrad (1965), Libai and
Bert (1994), and Tatting et al. (1997) and in finite element analyses (FEA) by Fuchs and
Hyer (1992) and Stockwell and Cooper (1992).

Apparently, the only investigations removing hypotheses no. 2 and no. 3 have been the
FEA by Fuchs and Hyer (1992) and Stockwell and Cooper (1992). No investigations known
to the author have removed hypothesis no. 4.

The assumption of homogeneous isotropic material (hypothesis no. 5) was lifted by
Hayashi (1949), Kedward (1978), Fuchs and Hyer (1992), Stockwell and Cooper (1992),
Libai and Bert (1994), Li (1996), Tatting et al. (1996, 1997), and Harursampath and Hodges
(1999).

The hypothesis (no. 6) of linear elastic material has been removed in numerous
analytical and numerical investigations involving the plastic range. Apparently, the first
analysis to include simultaneously cross-sectional ovalization and local (short-wavelength)
buckling (hypothesis no. 7) was the recent FEA by Knight et al. (1995) and analytical study
by Tatting et al. (1996).

The only investigations that removed hypothesis no. 8 (doubly symmetric cross-
sectional deflection) were the FEA by Prinja and Chitkar (1986), Fuchs and Hyer (1992)
and the recent analytical study by Libai and Bert (1999). The aforementioned FEA also
lifted hypothesis no. 9 (cos 2 θ form). Finally, hypothesis no. 10 (no in-surface shear
warping deformation) was removed by Libai and Bert (1994) and Tatting et al. (1997), who
showed that it was negligible except in the case of very short shells.

The purpose of the present investigation is to analytically remove hypotheses 2, 3, 4,
and 9. The objective is an attempt to improve upon the previous analytical investigations
especially for the case of relatively thick-walled shells.

2. Strain Energy of Axial-Stress Action (Arbitrary Wall Thickness)

The strain energy per unit length of shell resulting from axial-stress action may be
expressed as

(1)

where V ≡ volume per unit length, ε x ≡ axial normal strain, and σ x ≡ axial normal stress

component.
The axial bending moment is given by

(2)
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where A ≡ cross-sectional area, r and θ are plane polar coordinates in the cross-sectional
plane. The axial normal stress is given by

(3)

Here E x  is the axial elastic modulus and the axial normal strain is assumed to be small and

to obey the hypothesis that plane sections remain plane. Then

(4)

where C is the axial bending curvature and η is the resultant vertical deflection component

given by

(5)

Here w and v are the respective radial and circumferential displacement components. It is
noted that all previous investigations used hypotheses 3 and 4 and thus used the mean radius
(a) instead of the general radius (r) in eqn. (4).

The differential area referred to in eqn. (2) is expressed as follows:

d A = r dr  dθ (6)

Again it is to be emphasized that previous investigations used only the following
approximate expression:

dA = at d θ (6a)

Here t ≡ tube wall thickness.

Substituting eqns. (3) – (6) into eqn. (2), one obtains

(7)

where Ri  and R o  are the respective inside and outside radii of the tube. By definition, the

centroidal area moment of inertia of the deformed cross section is

( 8 )

From eqns. (7) and (8), it is clear that

and eqn. (1) becomes

(9)

(10)
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Up to now, all of the equations presented have been exact within the hypotheses used.
Now, however, in the spirit of Brazier (1927) and Calladine (1983), the following one-term
assumptions are made for each of the deflection components:

(11)

Here, ξ and γ are dimensionless coefficients to be determined later by the principle of

virtual work.
Inserting eqns. (11) into the integral (8) and performing all of the integrations exactly

yields

(12)

It is noted that the first term on the right side of eqn. (12) is the moment of inertia of the
undeformed cross section. For purposes of comparison, the classical thin-walled version of
eqn. (12) is

(13)

Both eqns. (12) and (13) can be written in the following general form

(14)

It can be shown that the approximate I2 is identical to the exact one and that the

approximate values of I o  and I 1 are always higher than the exact as shown in Table 1. It

can be concluded that the approximate expressions are adequate for a/ t ≥ 3 .

TABLE 1. Comparison of ratios of the exact moment-of-inertia
terms to the approximate ones as a function of a/t or R i /R o

a / t Ri / Ro

1 0.3333 1.250 1.083
2 0.6000 1.063 1.021
3 0.7143 1.028 1.009
5 0.8182 1.010 1.003

10 0.9048 1.003 1.001
20 0.9512 1.001 1.000
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3. Strain Energy of Circumferential-Bending-Stress Action
(Arbitrary Wall Thickness and Curved-Beam Effect)

The strain energy per unit length of the shell resulting from circumferential-bending-
stress action may be expressed

(15)

where εbθ and σbθ are the circumferential bending strain and stress, respectively.

Generalized Hooke’s law for a thin orthotropic shell may be written as

(16)

where E θ ≡ circumferential elastic modulus, vv θ ≡ Poisson’s ratio associated with

uniaxial stress in the circumferential direction, and λ ≡ 1 – vθ xvxθ. Using dA from eqn. (6)

for dV and σ θ from eqn. (16), one can rewrite eqn. (15) as follows:

(17)

At this point, previous analyses have invoked the following simplifications:

(1) Neglect of the Poisson coupling term vxθ εbθ ε x

(2) Use of eqn. (6a) instead of eqn. (6) for the cross-sectional area
(3) Use of straight-beam theory instead of ring or curved-beam theory
(4) Neglect of the middle-surface circumferential extensional strain
Here we make none of those simplifications except the last one which is covered in the

next section. Using the Winkler-Bach curved-beam theory as presented by Boresi et al.
(1993), the circumferential bending strain can be expressed as

(18)

where Rn ≡ radius of the neutral surface and β ≡ circumferential rotation in the cross-

sectional plane. Thus, eqn. (17) becomes

(19)

Eqn. (19) is exact within the hypotheses used. Now we introduce assumed modes for w and
v as given in eqns. (11) and the following consistent mode for β into eqn. (17)
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(20)

to obtain the following result:

(21)

It is noted that the Poisson effect ( vxθ term) has vanished. All that remains is to evaluate

Rn  for a rectangular cross section of unit length and inside and outside radii R i and R o ,

respectively. From Boresi et al. (1993), we have

(22)

Substituting eqn. (22) into eqn. (21) and simplifying yields

(23)

It can be shown that for the thin-walled case (see Calladine, 1983, for instance)

(24)

Table 2 shows a comparison of Ub θ according to eqns. (23) and (24) as a function of a/t.

Again, for a/t ≥ 3 , the error in using the approximate expression is less than 5%.

TABLE 2. Ratio of the exact circumferential bending strain
energy to the approximate one as a function of a / t or R i / Ro

a/t Ri /Ro ( Ubθ )e / (Ubθ)a

1 0.33333 1.0770
2 0.60000 1.0178
3 0.71429 1.0100
5 0.81818 0.9800

10 0.90476 0.9591
20 0.95122 0.9532

4 . Strain Energy of Circumferential-Membrane-Stress
Action (Arbitrary Wall Thickness)

Here two different models are presented: one based on the thin-walled assumption and
the other based on arbitrary wall thickness.

In general, the strain energy per unit length of tube due to circumferential extension is
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(25)

Also,

(26)

For the thin-walled case

Thus,

(28)

Substituting eqns. (11) into eqn. (28), one obtains

For the case of arbitrary wall thickness,

(27)

(29)

(30)

Then substituting eqns. (11), (26), and (30) into eqn. (25) one obtains

(31)

Performing the integration yields

(32)

Table 3 shows a comparison of Ue θ as a function of a / t. Again, for a / t ≥ 3, the error

in using the thin-walled approximation is less than 1%.

TABLE 3. Ratio of the exact circumferential extensional strain
energy to the approximate one as a function of a / t or R i / Ro

a/t R i/ Ro (Ueθ)e /(U eθ )a

1 0.33333 1.0986
2 0.60000 1.0217
3 0.71429 1.0094
5 0.81818 1.0034

1 0 0.90476 1.0009
2 0 0.95122 1.0002
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5 . Determination of the Dimensionless Deflection Parameters

The total strain energy is the sum of strain energies due to axial bending,
circumferential bending, and circumferential extension:

(33)

Thus,

(34)

Nondimensionalizing, we introduce

Then

(35)

By use of the principle of virtual work which leads to the principle of stationary
potential energy, we set

(36)

to obtain the appropriate values for ξ and γ, which are solved to obtain the following

results:

(37)

where
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(38)

For purposes of comparison of several mathematical models, the calculations are
carried out for a series of eight thick-walled nylon tubes tested by Luo (1992). The pertinent
data and results are listed in Table 4. It can be concluded that the Karam (1994) theory
always predicts significantly smaller values of ξ than the Brazier (1927) theory. However,

the improved thick-walled extensible theory presented here offers very little change from
the values predicted by Karam. Also, it is noted that the ratio of γ /ξ predicted by the

present theory ranged from –0.5041 to –0.5160 in comparison with the inextensional value
of ½.

TABLE 4. Comparison of dimensionless displacements predicted by various theories for the
eight tubes tested by Luo (1992)

Test R o Ri Dimensionless Brazier* Karam* Present
No. (in) (in) Curvature, Ca ξ B

ξ K ξ γ / ξ

1 5 4 0.1139 0.2095 0.1783 0.1773 -0.5067
2 5 4 0.09091 0.1335 0.1201 0.1195 -0.5064
3 5 3.5 0.1083 0.07510 0.07067 0.07065 -0.5160
4 5 3.5 0.08629 0.04767 0.04585 0.04589 -0.5158
5 6.25 5.25 0.1411 0.5250 0.3652 0.3653 -0.5045
6 6.25 5.25 0.1133 0.3386 0.2641 0.2635 -0.5041
7 6.25 4.75 0.1358 0.1977 0.1697 0.1701 -0.5098
8 6.25 4.75 0.1089 0.1272 0.1150 0.1151 -0.5067

* In the Brazier (1927) and Karam (1994) theories, the a priori assumption of circumferential
inextensibility requires that γ / ξ =  – 1 / 2.

Luo (1992) measured the dimensionless ovalization factor P defined as follows:

In terms of the dimensionless deflection factor ξ, P can be expressed as

(39)

The results are compared in Table 5. Clearly, the improved thick-walled theory presented
here gives predictions closest to the experimental values. However, it should be cautioned
that in all of Luo’s tests, some material was beyond the yield strength.
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TABLE 5. Comparison of ovalization factor P for the experiments
conducted by Luo (1992); see Table 4 for data

P

Test R / R Exp. Predicted
ξ o Ca Luo Brazier Karam Present

1 0.80 0.1139 1.65 1.53* 1.434 1.431
2 0.80 0.90901 1.28 1.31 1.273* 1.271
3 0.70 0.1083 1.13 1.16 1.152* 1.152*
4 0.70 0.08629 1.08 1.10 1.096* 1.096*
5 0.84 0.1411 1.96 3.21 2.151* 2.151*
6 0.84 0.1133 1.415 2.02 1.718 1.716*
7 0.76 0.1358 1.445 1.49 1.409 1.410*
8 0.76 0.1089 1.195 1.29 1.260* 1.260*

* An asterisk denotes the prediction which is closest to the measured value.

6. Effect of Higher-Order Terms in θ

All of the previous analytical investigations of the Brazier problem assumed that the
radial deflection depended on θ as cos 2θ. To investigate the effect of higher-order terms

in θ, the following forms were used:

in a circumferentially inextensible Calladine-type analysis. The results, for the same eight
tubes as previously mentioned are summarized in Table 6. It is noted that although ξ2 i s

only approximately 2.6% of ξ1 , the effect on ξ1  itself is significant, as can be seen by

comparing with the results of Karam’s analysis in Table 4. In this case, the ovalization
factor is given by

Results are presented in the last column of Table 6.
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TABLE 6. Effect of a second θ -dependent term in an inextensional analysis 

One θ -dependent term Two θ -dependent terms †

Test ξ ξ ξ / ξ P
1  2 1

No. (Karam, 1994)
1 0.1783 0.2528 -0.0262 1.653*
2 0.1201 0.1498 -0.0264 1.342
3 0.07067 0.07997 -0.0265 1.169
4 0.04585 0.04959 -0.0266 1.101
5 0.3652 0.9239 -0.0254 19.08
6 0.2641 0.4684 -0.0259 2.678
7 0.1697 0.2359 -0.0262 1.596
8 0.1150 0.1419 -0.0264 1.321

* An asterisk indicates the only P value that is closer to Luo’s experimental results
than that predicted by Karam (1994); see Table 5.

In summary, it can be concluded that the use of higher-order terms in θ  offer little or
no improvement in ovalization factor.
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1. Abstract

The PANDA2 computer program has been modified to permit minimum weight design
of imperfect panels with riveted Z-shaped stiffeners for service in a load regime in
which the panel is in its locally postbuckled state. Perfect and imperfect panels optimized
with PANDA2 are evaluated via nonlinear STAGS analyses. The agreement between
predictions by PANDA2 and STAGS is sufficient to qualify PANDA2 as a preliminary
design tool for panels with riveted Z-shaped stringers. Optimum designs for panels with
Z-shaped stringers are compared to those with J-shaped and T-shaped stringers.

2. Introduction

In the late 1970’s van der Neut [1] obtained approximate buckling load factors for the
overall buckling of uniformly axially compressed flat panels with either bonded or
riveted Z-shaped stringers. He checked his results by comparing with predictions from
the VIPASA code by Wittrick and Williams [2,3].

Riks [4] performed an analysis with use of the STAGSC1 program [5]. He
included a study of sensitivity of the load factor corresponding to overall buckling to
initial bowing imperfections, finding unstable postbuckling behavior (imperfection
sensitivity) caused by deformation of the stringer cross section in the overall buckling
mode. In “classical” wide column buckling of a panel stiffened with T-shaped stringers,
for example, the T-stringer cross section remains undeformed as it translates normal to
the skin surface in the wide column buckling mode. This is not so with Z-stiffened
panels. In that case, because the stringers have a nonsymmetric cross section, they
undergo significant sidesway as the panel skin essentially translates normal to the
undeformed panel skin in the overall buckling mode. Hence, the load at which a Z-stiffened
panel collapses under uniform axial compression is sensitive to an initial overall bowing
imperfection even if the local buckling load factor significantly exceeds that corresponding
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to general (“wide column”) instability.
Local and overall bifurcation buckling of panels with Z-shaped stringers can

also be determined with the BUCLASP code [6] and with the newer successors to
BUCLASP and VIPASA: the PANDA2 [7], POSTOP [8], VICONOPT [9], and PASCO
[10] codes. PASCO, VICONOPT, PANDA2 and POSTOP are capable of obtaining
optimum designs of such panels and PANDA2 and POSTOP can do so including the
effect of local postbuckling [11] of the panel skin and/or parts of the stringers. The
authors of VICONOPT [9] are currently working on a postbuckling capability [9]. One
of the PANDA2 processors, called STAGSMODEL [12] automatically sets up a finite
element model of a panel previously optimized with PANDA2. The [PANDA2,
STAGSMODEL, STAGS] combination has been used many times to optimize and
evaluate optimum designs of panels under combined loads for service in the postbuckling
regime [11-15]. Other works are briefly surveyed in [16,17]. This paper is a condensed
version of [16], which is a condensed version of [17].

3. Method of Analysis

The purpose of the work reported here is to enhance the capability of PANDA2 [7] by
inclusion of Z-shaped stiffeners riveted to the panel skin. A discretized panel skin-stringer
single module is constructed as shown in Figs. 1 - 4. The stringer spacing is called “b”
and the rivet line, considered to be continuous in the axial direction and located at the
midwidth of the attached flange (Segment 2 of the single module shown in Fig. 1), is
located at b/2, the midwidth of the entire module. The toe and heel of the attached
flange are free to separate from or to “penetrate” the panel skin in the local buckling
mode and in the post-local buckling regime: no intermittant contact conditions are
imposed in the PANDA2 model. At the rivet line compatibility conditions are imposed
between panel skin and attached flange. Eccentricity of the reference surface of the
attached flange with respect to the reference surface of the panel skin is accounted for.

The sketches in Figs. 1(a) and 1(b) are displayed on the computer screen as a
guide for the user during his/her interactive input session. Figures 2 - 4 show the
discretization of the cross section of the single module. Symmetry conditions are imposed
at Node 1 of Segment 1 and at Node 11 of Segment 5 [Fig. 1 (b)]. Figure 2, a local
buckling mode of a nonoptimized cross section, demonstrates that the attached flange of
the Z-stiffener can bend differently from the panel skin to which it is attached along the
rivet line. In contrast, T and J stiffeners are assumed to be bonded to the panel skin.

Local buckling is determined by preventing the root of the web of the Z-stiffener
[Node 1 of Segment 3] from moving in a direction normal to the panel skin, as shown in
Figs. 2 and 3. The location of this nodal point is slightly above the dashed horizontal
line at the ordinate value of zero (z=0) because Segment 2, which represents the reference
surface of the attached flange of the Z-stiffener, is located in this example at a distance,
(t 1 + t

2
)/2, above the reference surface of the panel skin, which is at z=0. The quantity t

1
is the thickness of the panel skin and t2  is the thickness of the attached flange.

Overall buckling is predicted from both a single-module discretized “wide column”
model, such as shown in Fig. 4, and from a model in which the stiffeners are “smeared
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(a) MODULE WITH Z-SHAPED STIFFENER.. .

(b) EXPLODED VIEW, SHOWING LAYERS and (SEGMENT, NODE) NUMBERS

Figure 1. Cross section dimensions, segment numbering and nodal point numbering of riveted Z-stiffened

panel module. These sketches are presented to the PANDA2 user during interactive input and in the output.
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out” (averaged) over the panel in the manner of Baruch and Singer [18]. In the “wide
column” model the root of the web of the Z-stiffener [Node 1 of Segment 3 in Fig. 1(b)]
is permitted to move, as demonstrated in Fig. 4.

Discretization of the cross section of the single module model is via the finite
difference energy method, as described in [19]. There are a number of nodal points in
each of the segments of the module cross section, as shown in Fig. 1(b). Variation along
the axis of the panel (normal to the plane of the paper) is assumed to be trigonometric.
The critical number of axial halfwaves and critical slope of the buckling nodal lines in
the plane of the panel skin (for an anisotropic panel and/or a panel in which in-plane
shear loading Nxy is present) are determined in the analysis described in detail in [11].

Local buckling modes typically have a form such as shown in Fig. 3, which is
assumed to be sinusoidal in the axial direction with a computed critical number of axial
halfwaves and a computed slope of the local buckling nodal lines [11] in the critical
local buckling mode. The local buckling nodal lines are assumed to be straight.

The nonlinear local postbuckling analysis [11] is analogous to that of Koiter
[20]. In PANDA2 the axial wavelength and the slope of the nodal lines of the postbuckled
pattern are permitted to change as the applied load is increased above that corresponding
to initial local bifurcation buckling. Also, the post-locally buckled panel skin is permitted
to “flatten” in the region midway between stringers, as described by Koiter [20], who
introduced a “flattening parameter”, a, into his analysis [11]. Details of the nonlinear
post-local buckling analysis and predictions from PANDA2 and STAGS [21] appear in
[11] .

The “wide column” buckling mode has a form such as shown in Fig. 4. There is
assumed to be one-half wave in the axial direction in the “wide column” mode. The
“softening” effect which influences the effective overall axial, hoop, and in-plane shear
membrane stiffness components of a locally imperfect and/or locally postbuckled panel
module (See Fig. 15 of [12], for example) is accounted for in the computation of the
bending-torsional, “wide column” and overall buckling load factors.

4. Implementation of Z-shaped Stringers into PANDA2

The file that contains prompting phrases and “help” paragraphs for the user was modified
to include Z-shaped stiffeners. Special sketches for Z-shaped modules were introduced
into the PANDA2 input prompts and output as depicted in Figs. 1 (a,b).

In order to maintain conservativeness of optimized designs, no allowance is
made in PANDA2 for clamping Z-shaped stringer-stiffened panels along the two axially
loaded ends as opposed to simple support there. In the computation of “effective” axial
length (described for clamped panels in [7] and in ITEMS 3, 79a, 105e, 106, and 113d,r
of the PANDA2 documentation file, ...panda2/doc/panda2.news [22]), a panel with
Z-shaped stringers is ALWAYS treated as if it were simply supported along its two
axially loaded ends even if the user indicates clamping there. This strategy was introduced
during the testing phase of implementation of the “Z” capability. Comparison of results
from PANDA2 and STAGS [21] revealed that this strategy is required to maintain
conservativeness of optimum designs of imperfect (bowed) panels generated by PANDA2.
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Figure 2. Local buckling of a module with a very weak attached flange.

Figure 3. Local buckling of a module of an optimized panel.

Figure 4. Wide column (general) buckling of a module of an optimized panel.
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It is thought that this new strategy, now introduced into PANDA2 also for
J-shaped stringer stiffened panels, compensates for the softening effect on effective
axial stiffness of sidesway of the “unbalanced” stringers as an initially axially bowed
panel with Z or J stringers deforms further under application of axial compression [4].
(By “unbalanced” is meant here a stringer which is not symmetrical with respect to a
plane normal to the panel skin and containing the line of attachment of the stringer to
the panel skin). Unfortunately, in its nonlinear Koiter-type postbuckling analysis [11],
PANDA2 accounts for deformation of the single module cross section ONLY in the
LOCAL buckling mode, such as that shown in Fig. 3, not also in the “wide column”
(general) buckling mode, such as that shown in Fig. 4. (Note, however, that in one of
the branches in which the maximum stresses are computed, PANDA2 does include this
effect in an approximate manner, as described in [23]).

It is emphasized here that the neglect of further stiffener sidesway in PANDA2’s
analysis of the overall collapse of Z or J stiffened panels with overall initial buckling
modal imperfections may well lead to the generation of unconservative designs in the
case of imperfect Z or J stiffened panels that are actually simply supported along the
two axially loaded ends. In such cases, the user should introduce factors of safety for
inter-ring and overall buckling that are greater than unity, perhaps in the range 1.2 - 1.5.

The sequence of execution of PANDA2 modules called BEGIN, DECIDE,
MAINSETUP, PANDAOPT, CHOOSEPLOT, DIPLOT, etc. is described in [7] and
[22]; the use of the processor called SUPEROPT (for obtaining global optimum designs)
is discussed in [14]; and the “automatic” generation of STAGS finite element models of
panels previously optimized by PANDA2 via the PANDA2 processor called
STAGSMODEL is demonstrated in [12]. There also exists a PANDA2 processor called
PANEL [7] that generates an input file for BOSOR4 [19] for a panel previously optimized
by PANDA2. (PANEL is valid only for panels with insignificant in-plane shear loading).
The BOSOR4 model of the panel generated by PANEL is of “annular” form, as described
in [24].

Optimization in PANDA2 is performed via the ADS routines written by
Vanderplaats and his colleagues [25, 26].

5. Summary of Numerical Results

Optimization is performed for flat aluminum, elastic panels with Z-shaped, J-shaped,
and T-shaped stringers. There are no transverse stiffeners (no rings). The panels are
subjected to uniform axial compression, Nx = -2000 lb/in, and are clamped along the
two axially loaded edges. All properties and decision variables and their lower and
upper bounds are listed in Table 1. A typical PANDA2 runstream for optimization is
listed in Table 2. Results for this study are summarized in Tables 3 and 4. Full details
appear in [17].

Results from ten cases are summarized in Table 3 (columns 1 - 10 in Table 3):
eight of the cases for a panel with riveted Z-shaped stringers, one for a panel with
bonded J-shaped stringers and one for a panel with bonded T-shaped stringers. The first
five cases (columns 1 - 5 in Table 3) are for perfect panels and the second five cases
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=========================================================================

TABLE 1. Panel to be optimized by PANDA2 (Z-stiffened, aluminum)

=========================================================================
Overall length of the panel Ll = 50 in.
Overall width of the panel L2 = 50 in.
Young's modulus, E = 10 msi
Poisson ratio nu = 0.3
Weight density rho = 0.1 lb/in**3
Maximum allowable effective stress SIGBAR = 45 ksi

Boundary conditions: clamped along two axially loaded edges
simple support along two unloaded edges

Applied load Nx = -2000 lb/in

DECISION VARIABLES (inches) LOWER INITIAL UPPER
BOUND VALUE BOUND

b = stringer spacing 5.0 10.0 10.0
b2 = width of attached flange 1.0 3.0 5.0
h = height of web 0.5 3.0 5.0
w = width of outstanding flange 0.5 3.0 5.0

t1 = thickness of panel skin 0.01 0.15 0.5
t2 = thickness of attached flange 0.01 0.05 0.5
t3 = thickness of web 0.01 0.10 0.5
t4 = thickness of outstanding flange 0.01 0.10 0.5

=========================================================================

TABLE 2. Sequence of PANDA2 commands used to obtain an optimum design

=========================================================================
Command function performed by command
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
BEGIN (Provide starting design; input data listed in Table 2 in 1171)
SETUP (Set up matrix templates. no input data required. See Ref. [7])
DECIDE (Choose decision variables and bounds. Table 7 in [17])
MAINSETUP (Choose loading, analysis type, model type... Table 8 in [17])
PANDAOPT ("batcht" execution of PANDA2 mainprocessor. See Ref. [7])
PANDAOPT "
PANDAOPT "
PANDAOPT "
CHOOSEPLOT (Choose which decision variables, margins to plot. )
DIPLOT (Obtain plots. See Refs. [12,13])
SUPEROPT (Attempt to find global optimum design. See Ref. [14])
CHOOSEPLOT
DIPLOT
SUPEROPT
CHOOSEPLOT
DIPLOT
SUPEROPT

.

.

.
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TABLE 3. Summary of results for various optimum designs from PANDA2, BOSOR4 and STAGS (Dimensions

in inches)
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TABLE 4. Comparison of predicions from PANDA2 and STAGS for the maximum effective stresses in

various panels optimized by PANDA2 and loaded well into their local postbuckling regimes. The panel is

loaded by the design load, axial compression, N
x

= -2000 lb/in.
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(columns 6 - 10) are for panels with an initial general buckling modal imperfection with
amplitude equal to plus or minus 0.1 in. The first three cases (columns 1 - 3) are for a
perfect panel in which local postbuckling is NOT permitted. In the first two cases the
stringer spacing b is held constant at 10.0 inches, and in the remaining 8 cases the
stringer spacing is one of the decision variables. The effect of the “modejump constraint”
(See [15]) is explored for a perfect panel in Cases 4 and 5 and for an imperfect panel in
Cases 6 and 7. For the optimum designs obtained by PANDA2 comparisons are made
with predictions from BOSOR4 [19] and STAGS [21]. The units used in this study are
inches and lbs.

Table 4 lists comparisons from PANDA2 and STAGS for the maximum effective
stresses in the optimized designs corresponding to Cases 4, 5, 6, 7, 9, and 10. In all
these cases the axial load, Nx = -2000 lb/in, corresponds to the panel being loaded well
beyond local buckling. (See PART 3 of Table 3).

Design margins corresponding to the optimum design for each of the 10 cases
are listed in PART 12 of Table 3. In PANDA2 buckling margins are defined as follows:

buckling margin = (buckling load factor)/(factor of safety) -1.

Stress margins in PANDA2 are defined as follows

stress margin = (allowable stress)/[(actual stress)(factor of safety)]-1.

In this paper only results corresponding to Column 4 of Table 3 will be discussed. For
more information see [16, 17].

6. Discussion of Results Listed in Column 4 of Table 3

Column 4 of Table 3, PART 1 of Table 4, and Figs. 5 - 14 pertain to this section. Local
buckling is permitted and the “modejump” constraint [15] is turned OFF, that is, mode
jumping IS PERMITTED in the optimized design.

6.1 OPTIMIZATION

Figure 5 shows the evolution of the panel weight during execution of the one SUPEROPT
[14] performed in this case. The “modejump” constraint was turned OFF during
optimization, that is, incipient mode jumping, a phenomenon modelled in PANDA2 as
described in detail in [15], was ignored during optimization. Each “spike” in Fig. 5
represents a new starting design in the SUPEROPT cycle, a starting design generated
automatically via the PANDA2 processor called AUTOCHANGE [14]. As explained in
[14], the starting designs are generated by random changes in the vector of decision
variables consistent with the lower and upper bounds and inequality constraint conditions
provided by the PANDA2 user in DECIDE.

6.2 RESULTS FROM PANDA2 FOR THE OPTIMUM DESIGN

The optimum weight of the panel, 30.07 lbs (Col. 4, PART 2 of Table 3), is about 20
per cent less than that (36.15 lbs) obtained for the optimum design in which local
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postbuckling is not permitted. The local buckling load factor of the new optimum
design, 0.364 (Col. 4, PART 3 of Table 3), indicates that at the design load the optimized
panel is loaded well into the local postbuckling regime. The critical number of axial
halfwaves in the local buckling mode is 10 [17]. As seen from Col. 4, PART 12 of
Table 3 the following design margins are critical or almost so: bending-torsion buckling
(-.001), maximum effective stress (0.016), wide column buckling (0.043), lateral-torsional
buckling (-0.030), buckling of stringer segment 4 (outstanding flange, 0.067), buckling
of stringer segments 3 and 4 together (web and outstanding flange, -.002), and general
buckling (0.150). (In PANDA2 very small negative margins are permitted for feasible
designs),

Figure 5. Evolution of objective during execution of SUPEROPT, a processor by means of which PANDA2

finds a global optimum design.
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The margin called “bending-torsion buckling” is computed in exactly the same
way as the margin for local buckling, that is, redistribution of stress resultants, N

x
, N

y
,

Nxy, in the panel skin and stringer segments that occurs for loads in excess of the local
buckling load is not accounted for in the computation of the “bending-torsion buckling”
constraint condition. In contrast, the margin called “lateral-torsional buckling” is computed
accounting for this stress redistribution, which is calculated in the “Koiter” (postbuckling)
branch of PANDA2 [11]. In this particular case “bending-torsion buckling” is predicted
by PANDA2 to occur with two axial halfwaves over the SO-inch length of the panel and
“lateral-torsional buckling” is predicted to occur with one axial halfwave. Margins 3
and 10 in PART 16 of Table 16 in [17] appear as follows:

3 -7.31E-04 Bending-torsion buck.(bypassed low-m mode); M=2; FS=1.1 (FS = “factor
of safety”)

10 -2.98E-02 (m=1 lateral-torsional buckling load factor)/(FS) -1; FS=1.1

The margins called “wide column buckling” and “general buckling” are computed with
the stress redistribution accounted for. The “wide column buckling” margin is computed
from a single discretized module model such as shown in Fig. 4. The “general buckling”
margin is computed from a model in which the effect of the stringers is “smeared”
(averaged) over the panel width in the manner of Baruch and Singer [18]. The buckling
margins called “stringer seg. n” are computed from a PANDA-type (closed form) model
[27] in which stringer segment n is assumed to be simply supported along its line of
intersection with other segments of the panel module if Segment n represents an “internal”
segment (such as the web of the Z) and in which one of the longitudinal edges is
considered to be free if Segment n represents an “end” segment (such as the outstanding
flange of the Z). The effect of stress redistribution during local postbuckling is accounted
for in the computation of these margins.

Values for “local buckling” and “mode jumping” margins are not given in Col.
4, PART 12 of Table 3 because the PANDA2 user has indicated in the PANDA2 input
data for MAINSETUP that these phenomena should not constrain the design in this
particular case. The “local buckling” margin becomes non-critical because the PANDA2
user has set the factor of safety for local buckling equal to 0.3. (See Margin No. 1 listed
in PART 16 of Table 16 in [17]).

Figure 6 shows how the single discretized, optimized panel module deforms,
according to PANDA2, as the panel is loaded beyond the local buckling load. As the
panel is loaded further and further into the postbuckled regime, one can see the “flattening”
of the postbuckled profile, especially in the panel skin on the left-hand side of the
module cross section. Figure 7 shows how the local buckles grow and how the postbuckled
panel bows with increasing axial compression, Nx. Since there is essentially zero initial
local buckling modal initial imperfection (Wloc = 0.1E-06 in Table 17 of [17]), there is
an abrupt change in behavior at the local buckling load factor, Nx(cr) = -2000 x 0.364 =
-728 lb/in. The “corner” becomes rounded off when there exists a local buckling modal
initial imperfection with a significant amplitude (See Fig. 126 of [17], for example).
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Figure 6. Postbuckling deformation of module cross section from PANDA2.

Figure 7. Postbuckling deflection w of panel skin and overall bowing from PANDA2.
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6.3 COMPARISON OF RESULTS FROM PANDA2 AND STAGS

The PANDA2 processor called STAGSMODEL [12] makes it relatively easy to generate
input data for STAGS [21] corresponding to a panel previously optimized by PANDA2.
In this way, the quality of the optimum design obtained by PANDA2 can be evaluated
by comparison with predictions from a general-purpose finite element computer program
that does not use the many “tricks” and approximations employed in PANDA2 in order
to save computer time, which must be efficiently used during optimization cycles.

At present, STAGSMODEL works only for panels that are clamped along the
two axially loaded edges and only for panels that do not contain any transverse stiffeners
(rings). STAGSMODEL produces the two STAGS input files, *.bin and *.inp (in which
“*” denotes a user-selected name for the case), for what in STAGS jargon is called an
“element unit” (no “shell units”). Therefore, the *.inp file is often very large (more than
a megabyte). Typical input data for STAGSMODEL are listed in Table 12 of [17].

In this particular case the STAGS finite element model, shown in Fig. 8, consists
of only a single module. Therefore, the STAGS model is analogous to the PANDA2
model displayed in Fig. 6. A one-module STAGS model is acceptable in this case
because the panel is not subjected to in-plane shear loading and the walls of the panel
skin and Z-stiffener are not anisotropic. (However, see the discussion below about the
maximum postbuckling stress midway between stringers.)

Figure 8. Bifurcation buckling mode from single-module STAGS model.
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In the STAGS models generated during this study the two longitudinal edges are free to
approach eachother and to undergo in-plane warping. This freedom of displacement
along these edges generally leads to conservative results because the local buckles can
become deeper in the postbuckling regime than would be the case if in-plane warping of
the two longitudinal edges were prevented.

From linear analysis STAGS predicts a critical bifurcation buckling eigenvalue,
pcr = 0.37208 (Fig. 8), which is in very good agreement with PANDA2’s prediction of
0.364 (Col. 4, PART 3 of Table 3). As seen in Fig. 8(b) the local buckling mode from
STAGS has 9 axial halfwaves, whereas PANDA2 predicts 10 axial halfwaves. The
difference arises from the different boundary conditions used in the STAGS (clamped)
and PANDA2 (simple support) at the two axially loaded ends of the panel module for
the analysis of local buckling. In the central region of the panel the axial wavelengths of
the local buckles as predicted by STAGS and PANDA2 are in very good agreement.

Next, it is necessary to find at what load STAGS predicts the optimized panel to
collapse under uniform axial end shortening. The method of doing this is described in
some detail in [12]. A nonlinear collapse analysis is performed with STAGS with use of
the one-module model shown in Fig. 8. The STAGS model includes an initial imperfection
in the form of the local buckling mode depicted in Fig. 8. This initial imperfection is
required to avoid almost singular behavior in the neighborhood of the local buckling
load at a load factor of about 0.372. With a small imperfection in the form of the local
buckling mode there will be a smooth transition from prebuckling state to locally
postbuckled state as the panel is loaded into its post-local-buckling regime. (See Fig. 6
of [11] for an example).

NOTE: In this paper for all the STAGS results a load factor, PA = 1 .0, corresponds
to the design load, Nx = -2000 lb/in.

Figure 9 shows the load-end-shortening curve obtained via STAGS. There are
several groups of load steps for which unloading occurs, as is demonstrated in Fig. 17
of [16]. Often in a case such as this the unloading represents “Riks reversal” (see Fig.
17 of [15]), in which the Riks path [28] doubles back on itself, converging to the same
states determined in previous load steps. Superficially that appears to be the case here,
since all the points in Fig. 9 appear to lie on the same fundamental curve. However the
points do NOT all lie on the same fundamental curve, as will be shown next.

Figures 10(a) and 10(d) show the deformed state of the panel module at a load
factor very near unity (PA = 1.00832), that is, very near the design load, PA=1.0, at
Load Step 23. While the skin is deformed in a pattern similar to that shown in Fig. 8(b)
(local buckling mode shape), the stringer undergoes a long-axial-wave sidesway similar
to the deformation patterns corresponding to Margin Numbers 3 and 10 in PART 16 of
Table 16 of [17]:

3 -7.31E-04 Bending-torsion buck.(bypassed low-m mode);M=2; FS=l.1
10 -2.98E-02 (m=l lateral-torsional buckling load factor)/(FS)-1; FS=1.1

Figures 10(b-e) display edge-on views of the locally postbuckled panel module
at four load steps, Steps 10, 15, 23, and 76. Note that the deformations shown in Figs.
10(a-d) (Load Steps 10, 15, 23) represent essentially growth of the local buckling lobes
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as the loading is increased. However, the equilibrium state of the panel at Load Step 76
is quite different from that at Load Step 23, even though the load factor PA and the end
shortening u are, for all practical purposes, the same at these two load steps. At Load
Step 76 the local buckling lobes along the one edge of the panel module have shifted
relative to those along the other edge and an additional buckle has appeared (Fig. 11).

Figures 11(a,b), which are “fringe” plots of the normal displacement w in the
panel skin as viewed from the surface of the panel skin opposite to the surface to which
the stringer is attached, show more clearly the relative positions of the local buckling
lobes on either side of the stringer at Load Steps 23 and 76. Note that at Load Step 76
(Fig. 11(b)) an additional buckle has appeared along the bottom half of the single panel
module relative to the number of buckles apparent there at Load Step 23 (Fig. 10(a)).
This change in equilibrium state represents a mode “jump”. Often a mode “jump” can
be captured only by means of a nonlinear transient STAGS run “sandwiched” between
nonlinear static STAGS runs [15]. In this case, however, it turns out that the static Riks
procedure [28] is capable of capturing the change in state of the panel between Load
Step 23 and Load Step 76. As will be seen later, this mode “jump” has a significant
influence on the maximum effective stress generated in the panel skin.

Figure 9. Load-end-shortening curve from the single-module STAGS model.
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(a) Load step 23, PA = 1.00832

(b) Load step 10, PA = 0.57259

(c) Load step 15, PA = 0.78741

(d) Load step 23, PA = 1.00832

(e) Load step 76, PA = 1.00890

Figure 10. Edge-on views (b-e) of postbuckling deflection w, single-module STAGS model.

(a) Load step 23, PA = 1.00832

(b) Load step 76, PA = 1. 00890

Figure 11. Fringe plots of postbuckling deflection w in skin of single-module STAGS model.
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Figure 12 demonstrates the local buckling and postbuckling phenomena at a location
along the axis of the panel, x = 30 inches from one end. The depth of the buckles is
equal to the difference between the normal displacement w at either of the two longitudinal
edges (curves with triangles and squares) and w in the panel skin under the stringer web
(curve with circles). Up to Load Step 23 the buckle depth as a function of load obtained
by STAGS agrees reasonably well with the prediction by PANDA2 shown in Fig. 7 as
the curve with squares. After Load Step 23 it is clear that the buckle represented by the
curves with triangles in Fig. 12 shifts along the panel axis, so that what was a maximum
w(x) at Load Step 23 becomes a node (w(x)=0) for Load Step 58 in Fig. 12. The
different axial positions of the local buckles along the longitudinal edge of the panel
module represented by the curves with triangles in Fig. 12 are displayed for Load Steps
23 and 76 in the fringe plots of Figs. 11(a,b) corresponding to the bottommost of the
two longitudinal edges.

Figure 12. Normal deflection w of the panel skin at the web root and midway between Z-stiffeners from the

single-module STAGS model.
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Figure 13 shows sidesway of the stringer at the panel end (curve with squares) and at
the panel midlength (curve with circles). Sidesway at the panel ends, a phenomenon that
cannot be predicted by the PANDA2 analysis, begins immediately after local buckling.
Sidesway at the panel midlength begins at a somewhat higher load. This also cannot be
predicted by the PANDA2 analysis, which is based on the assumption that in the
post-local buckling regime the panel module cross section deforms as shown in Fig. 6.
According to PANDA2, sidesway of the stringer will exist in this case of a perfect panel
only at loads in excess of the design load because the following margins listed in Part
16 of Table 16 in [17],

3 -7.31E-04 Bending-torsion buck.(bypassed low-m mode);M=2; FS= 1.1
10 -2.98E-02 (m=1 lateral-torsional buckling load factor)/(FS)-1; 1.1

become significantly negative only for loads in excess of 1.1 times the design load, N =
x

-2000 lb/in.

Figure 13. Sidesway of web tip at panel end and midlength from single-module STAGS model.
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Figures 90 - 95 of [17] show extreme fiber effective (von Mises) stress vs load factor
PA where fringe plots (not included because they are inadequate in black-and-white)
indicate that these stresses are the highest of any in the single panel module and at
which PANDA2 predicts that maxima occur in the single discretized module model.
The values of these stresses at the design load, PA = 1.0, before the mode “jump” (at
Load Step 23) can be compared with the values predicted by PANDA2. This comparison
appears in PART 1 of Table 4.

Figure 14 shows the effective stress in the panel skin at the rivet line. This is the
location of the maximum effective stress anywhere in the panel module cross section at
the design load, PA = 1.0. Before the mode jump at Load Step No. 23 the maximum
effective stress according to PANDA2 is 44204 psi (PART 1 of Table 4), a value that is
in very good agreement with the STAGS prediction: 40000 psi. During the mode jump
(Load Steps 24-76) the maximum effective stress grows very steeply well beyond the
critical value of 45 ksi. Mode jumping should be prevented in optimization runs.
This is done in the case listed as Column 5 of Table 3 and PART 2 of Table 4. Results
obtained with the “mode-jump-prevention” switch turned ON are described in [16, 17].

Figure 14. Maximum effective stress in panel skin from single-module STAGS model.
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Compared to that predicted with the STAGS single module model, PANDA2
rather grossly underestimates the maximum effective stress midway between stringers
(discussed in [16] in connection with Fig. 27 of [16]). However, the effective stress at
this location is not critical. Also, the maximum effective stress midway between stringers
predicted by STAGS is higher for a one-module STAGS model (Fig. 8) than for a
STAGS model with three or more modules (Fig. 15, top). For example, for the optimum
design determined with the “modejump prevention switch” turned ON (Col. 5 of Table
3 and PART 2 of Table 4) PANDA2 predicts the maximum effective stress midway
between stringers to be 26385 psi and the one-module STAGS model predicts about
35000 psi. However, for a three-module STAGS model of this case, shown in Fig. 15,
STAGS predicts a maximum effective stress midway between stringers of about 27500
psi at the design load, PA = 1.0. This is in very good agreement with the prediction of
PANDA2. The lower maximum stress from the three-module STAGS model is caused
by the outer modules acting to constrain the amplitude of the local skin buckles in the
middle module. Compared to results from the one-module STAGS module, PANDA2
overestimates the critical effective stress anywhere in the panel by about 10 per cent.

The effective stresses from the STAGS model listed in PART 1 of Table 4
correspond to Load Step 23, that is, at the design load, PA = 1.0, but before mode
jumping occurs. Figure 14 demonstrates the extremely harmful effect of mode jumping.
The maximum effective stress in the panel skin at the rivet line becomes unacceptably
high at loads below the design load as the postbuckling pattern changes between Load
Step 23 and Load Step 76. Whereas PANDA2 predicts “stress failure” (defined here as
the maximum effective stress reaching the value 45 ksi) at a load factor of 1.016 (Col.
4, PART 10 of Table 3), the STAGS model predicts “stress failure” at a load factor of
approximately 0.91 (Col. 4, PART 11 of Table 3). PANDA2 yields unconservative
stress constraints in this case if optimization is performed with the “modejump prevention
switch” turned OFF.

Therefore, optimum designs should be obtained with the “modejump prevention
switch” in PANDA2 turned ON. The results for optimization with the “modejump
prevention switch” turned ON (Column 5 of Table 3) and subsequent analysis of the
optimized panel are discussed in [16, 17].

7.0 Conclusions

The agreement between PANDA2 and STAGS appears to be sufficient to qualify PANDA2
as a preliminary design tool for panels with riveted Z-shaped stringers for service in the
locally postbuckled regime. With proper (conservative) user input, such as specification
that the mode jump constraint be turned ON during optimization cycles, PANDA2 errs
on the conservative side, but does not appear to be overly conservative. Further work
should include a similar study performed for laminated composite panels, for cylindrical
panels, and for panels with both stringers and rings.
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Figure 15 Comparison of maximum midbay effective stress in panel skin predicted at the design load, PA =

1.0 from PANDA2 and STAGS three-module and one-module finite element models.
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ABSTRACT

Three problems related to a nondestructive detection of matrix cracks in thin-walled
ceramic matrix composite components are considered. First, the necessary background
for the analysis of a cross-ply component with matrix cracks undergoing small-amplitude
forced vibrations is prepared by specifying the stiffness that is affected by the presence of
cracks. The second problem solved in the paper is the steady-state surface temperature
rise over the ambient temperature in a vibrating component with cracks. This
temperature depends on local stresses what explains the necessity in the analysis of
forced vibrations. Finally, an exact solution of the problem of heat transfer in a
component with matrix cracks in the central transverse layer is considered, including the
transient period. The principal conclusion obtained based on numerical examples is that
thermography is a feasible and reliable method capable of detecting matrix cracks in
ceramic matrix composites.

1. INTRODUCTION

Ceramic matrix composites (CMC) have found numerous applications in situations where
a component is subject to thermomechanical  loading. Examples of these applications  are
internal chamber walls and nozzles of rocket motors, intake ramps for hypersonic
propulsion systems, thermal protection blankets for re-entry vehicles, brake disks in
transport systems,  etc. (Birman and Byrd, 1999, 2000a).

The advantages of CMC related to their ability to endure high temperatures and to
withstand initial damage without immediate failure are diminished due to their tendency
to matrix cracking. While there is an experimental evidence of post-processing matrix
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cracking, typical cracks develop in brittle matrices during lifetime of a CMC component.
Although these cracks result in a reduction of strength and stiffness, the most dangerous
effect is related to conduction of oxygen via the cracks to the fiber/matrix interface. The
subsequent oxidation results in an abrupt embrittlement of the material.

The necessity to detect matrix cracks resulted in interest to nondestructive evaluation of
CMC components. In particular, thermography has been considered as one of the
candidates for nondestructive testing of these materials (Cho et al., 1991; Camden et al.,
1998; Byrd and Birman, 1999). The application of this method necessitates us to excite
forced vibrations. Then rapidly changing local stresses result in a local elevated
temperature in the vicinity of the crack tip. In the case of bridging cracks perpendicular
to the fibers, friction along the fiber/matrix interface results in a release of significant
amount of heat (Cho et al., 1991; Byrd and Birman, 1999). An additional source of local
elevated temperature is related to energy dissipation that occurs in the course of partial
opening and closing of a crack during a cycle of motion. Thermoelastic coupling (Dunn,
1997) is another cause for a local elevated temperature due to the local stress
concentration around the crack tip (this coupling is not considered in the paper).

Typical CMC components consist of a number of layers (or yarns, in the case of a woven
material). Initial cracks develop in the transverse layers that are oriented in the direction
perpendicular to the direction of tensile loads. As the load increases, the density of
cracks in transverse layers increases as well. At an even higher load, the cracks begin to
penetrate into longitudinal layers (Kuo and Chou, 1995; Domergue et al., 1996). While
this scenario has been observed in cross-ply CMC, the general sequence of cracking
remains the same in angle-ply materials, i.e. first cracks develop in the layers oriented in
the direction that is close to perpendicular to the load direction. Therefore, a
development  of  the nondestructive technique capable of detecting initial matrix cracks in
transverse layers, prior to their propagation into longitudinal layers, is an important task.
The feasibility of this task and related issues of heat transfer are discussed in this paper.

The paper includes three parts:
- Stiffness of CMC with matrix cracks is necessary to determine the stresses in a

component subject to forced vibrations;
- Steady-state surface temperature due to the energy dissipation during vibrations can

be used to detect the presence of cracks;
- Exact solution of the transient heat transfer problem is presented.
It is shown in the paper that once transient temperature variations become negligible, the
results obtained using the exact solution coincide with those generated in the second
section.

2. STIFFNESS OF CROSS-PLY CMC COMPONENTS  WITH  MATRIX
CRACKS UNDERGOING SMALL-AMPLITUDE FORCED VIBRATIONS

The stiffness of CMC components with matrix cracks varies dependent on time and
coordinates. This is related to the effect of cracks on stiffness of individual layers. In
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particular, the cracks in a transverse layer result in a reduced stiffness in the load
direction. However, if the corresponding layer is subject to compression, the cracks may
close and the stiffness of the layer in the load direction is recovered. The cracks in
longitudinal layers reduce the stiffness in tension, as was shown by Pryce and Smith
(1993) in the case of cracks developed under load and by Byrd and Birman (1999) for the
cracks that appeared during post-processing cooling and affected residual stresses.
However, similar to the case of cracks in transverse layers, the stiffness may recover
under compressive stresses. Note that while these observations refer to the stiffness in
the load direction, in-plane shear is also affected by the presence of cracks, even if they
are closed, due to a possible sliding of the faces of a closed crack relative to each other.
Therefore, the analysis of a thin-walled CMC component with matrix cracks represents a
complex issue, that may be treated as a generalization of the problem of vibrations of bi-
modular materials previously considered by Bert and Kumar (1982) and others. This
analysis is presented in the forthcoming paper of the authors (Birman and Byrd, 2001).

The complexity of the analysis may be reduced in the case where the amplitude of forced
vibrations excited during nondestructive tests is very small. Then, if the crack closing
occurs at a certain compressive strain, this strain is not reached during the cycle of
motion. Accordingly, the entire stress-strain relationship during the cycle corresponds to
that for the material with open matrix cracks. This situation is illustrated in Figs. 1 and 2.
The former figure illustrates matrix cracks in longitudinal and transverse layers and the
orientation of the load that caused these cracks. Note that although the stiffness of
materials with either bridging or tunneling cracks is a function of the applied stress, the
problem discussed in this paper deals with CMC structures with preexisting matrix
cracks. In this case, the stiffness appears to be independent of the stress, as long as the
stress does not exceed the maximum value that caused cracking (the crack spacing that
affects the stiffness should be evaluated at this maximum stress). Accordingly, the stress-
strain relationship is linear, as is shown in Fig. 2.

In the case of matrix cracks limited to transverse layers of a cross-ply component, the
stiffness of the laminate can be evaluated using the shear lag analysis or the energy
considerations (see the recent paper of Kashtalyan and Soutis, 1999, for a list of work in
this area). For example, Han and Hahn (1989) presented the results for the composite
average engineering constants in the presence of matrix cracks. Therefore, the solution
of a vibration problem can be obtained using standard methods of the theory of vibration
with correspondingly adjusted stiffness coefficients, accounting for the presence of
matrix cracks.

The limits of validity of this simple solution are available by comparing the crack
opening displacement to maximum compressive deformations reached at the
corresponding location during the cycle. In the case of a regular system of cracks
contained within a transverse layer, the strain necessary to initiate the process of the
crack closing can be obtained as a ratio of the crack opening displacement to the spacing
of cracks. If the applied compressive strain reaches the crack closing value, the linear
stress-strain relationship becomes unacceptable.
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The value of the crack opening displacement may be available from experiments. An
analytical estimate may be obtained using the observation that a crack in a transverse
layer is parallel to the fibers. Therefore, the compression of the crack that may result in a
complete or partial closing takes place in the plane perpendicular to the fibers where the
material of the layer is transversely isotropic. Accordingly, the crack opening
displacement can be estimated using isotropic models.

In the case where the cracks exist in both longitudinal as well as transverse layers, an
estimate of the modulus of elasticity in the load direction becomes quite complicated. A
possible approach is based on the fact that the cracks begin to appear in longitudinal
layers only after they have reached saturation in transverse layers. However, it was found
that even as the cracks reach the saturation in transverse layers, a reduction of the average
modulus of elasticity of the composite material is rather small (Birman and Byrd, 2001).
Using the average composite modulus corresponding to saturation of the cracks in
transverse layers it is possible to calculate the modulus of the latter layers by the rule of
mixtures. Similarly, other engineering constants of the transverse layers corresponding to
the crack saturation can be evaluated from the corresponding micromechanical equations
and the solution for these average material constants suggested by Han and Hahn (1989).

Now it is possible to estimate engineering constants of longitudinal layers with matrix
cracks under a prescribed stress. In particular, the longitudinal modulus of elasticity E x

can be evaluated as follows. The stress in the transverse layer corresponding to the crack
saturation is available from Han et al. (1988). It is assumed that additional loading does
not result in an increase of the stress in transverse layers. Therefore, the stress in
longitudinal layers can be calculated as a function of the applied composite stress.
Subsequently, the modulus of elasticity of the longitudinal layers is determined as a
function of the stress in these layers.

As suggested in the previous work of the authors, it is possible to assume that the
stiffness of the material in the planes parallel to the crack plane remains without change
(Birman and Byrd, 2000b). Accordingly, in the longitudinal layer in the state of plane
stress, the only engineering constants affected by open bridging cracks are the Poisson
ratio νyx and the shear modulus Gxy. The values of these constants can be obtained as
(Birman and Byrd, 2000b):

(1)

where the quantities with a prime denote engineering constants affected by matrix
cracking. Although these equations may become inaccurate due to the presence of
transverse layers, they should provide satisfactory qualitative results. A more accurate
approach to the evaluation of the shear modulus, similar to the method suggested in the
previous paragraph for the longitudinal modulus, could also be considered.

Note that the assumption that matrix cracks remain open during the entire cycle of motion
does not necessarily introduce a noticeable error, even if it is violated in practice. This is
because the surface temperature elevation due to the presence of cracks is dependent on
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the stresses, as shown in the next section. While deformations increase due to an
underestimation of the stiffness, the stresses are proportional both to the stiffness as well
as to deformations. Therefore, the overall effect of underestimating the stiffness on the
stresses (and on temperature) is lower than the corresponding effect on deformations.

The previous discussion illustrating that the stresses can be estimated by assumption that
the compressive strain remains below the closing value should not be applied to free
vibration problems concerned with an estimate of natural frequencies. The frequency is
proportional to the stiffness of the structure and the simplifying assumption introduced
above could yield noticeable mistakes.

Fig. 1. Transverse layers with tunneling matrix cracks and longitudinal layers with
bridging matrix cracks.

Fig. 2. Stress-strain relationship for transverse or longitudinal layers of a CMC
composite with preexisting matrix cracks. Note: the stress-strain relationship may be
nonlinear in the vicinity of σc due to a gradual crack closing.
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3. ESTIMATE OF SURFACE TEMPERATURE DUE TO ENERGY
DISSIPATION AROUND CRACKS IN TRANSVERSE LAYERS DURING
VIBRATIONS

In this section we illustrate that the surface temperature elevation in the vicinity of cracks
in transverse layers of CMC components is sufficiently high to be detected by
thermography. This elevated temperature can further be used to nondestructively predict
the presence of internal damage.

Consider a transverse layer with a family of identical equally spaced tunneling matrix
cracks (Fig. 1). Such cracks usually have a significant extent in the direction
perpendicular to the plane of drawing in Fig. 1, so that it is possible to assume the state of
plane strain and treat the cracks as mode I fracture. The analysis is conducted by
assumption that kinetic energy is negligible, i.e. we consider a relatively slow quasi-static
process. The cracks are present in transverse layers only, so that frictional energy
dissipation that occurs along the fiber-matrix interface in the case of bridging cracks in
longitudinal layers is absent. Accordingly, rate of the external work performed in the
vicinity of the crack tip during vibrations (dW/dA) is equal to the local changes in the
strain energy (dU/dA), the local energy of dissipation (dQd/dA = Q' ) and the energy
necessary to create the new surface area (dS/dA). Here A is the surface area of the crack.
Using the definitions

G = dW/dA – dU/dA S = 2γA (2)

where G is the strain energy release rate and γ is the fracture surface energy density of the
material, one obtains the rate of the energy of dissipation (thermal energy) around the tip
of the crack as

Q ' = G - 2γ (3)

The energy dissipation (thermal energy) for a crack that extends a distance B in the
direction perpendicular to the plane of drawing in Fig. 1 is

(4)

where a is a half-length of the crack.

The energy release rate can be expressed in terms of the mode I stress intensity factor by
(Kanninen, and Popelar, 1985).

(5)

where KI is the stress intensity factor, and bij are the elements of the matrix of
compliances in the plane strain constitutive relationships.
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The stress intensity factor is the same function of the applied stress σ and the crack half-
length as in isotropic materials, i.e.

KI = fσ(πa)1/2 (6)

where f is the correction factor accounting for the surface effect. Williams (1989)
indicated that the isotropic finite width correction factors may be adequate for composite
materials, except for the cases where “extreme anisotropy is involved.” For isotropic
materials, the value of this factor is usually in the range between 1.0 and 1.2 (Bannantine
et al., 1990). Therefore, if the location of the crack relative to the surface is not specified,
the conservative approach would be to assume f = 1 .0.

The values of the fracture surface energy density for CMC have not been reported, to the
best knowledge of the authors. However, it is possible to estimate this energy using the
solution of Chou (1992) for the critical strain corresponding to the matrix crack initiation
in transverse layers of a cross-ply material:

(7)

where t1 is the thickness of longitudinal layers, tt is the thickness of transverse layers, and
EL, ET and E C are the longitudinal, and transverse moduli of the layers and the composite
modulus, respectively. The factor ϕ is based on the shear-lag analysis and reflects an
additional stress transferred to longitudinal layers as a result of cracking of the transverse
layers. This factor is given by

(8)

where GLT is the shear modulus.

Note that the fracture surface energy density calculated from equation (7) is independent
of the crack length (and time). Then evaluating the integral in equation (4) and taking a
derivative with respect to time one obtains the expression for the heat transfer rate as a
function of applied stresses and the crack length:

(9)

where t is time and C is a constant of integration that should be chosen to ensure that Q is
non-negative.

Note that equation (9) is obtained by assumption that the effect of the kinetic energy on
the energy balance in the vicinity of the crack tip is negligible. Variations of the crack
length during the cycle are also assumed small and their effect is neglected as compared
to that of the rate of change of the applied stress.

If we assume that the thermal energy change within the material is equal to the heat flow
through the surface, the balance condition is
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2Q/s = qB (10)

where q is a rate of heat gain or loss through the surface, s is the crack spacing, and the
factor 2 accounts for two tips of the crack. Equation (10) should be modified if thermal
capacitance is accounted for, but the present analysis refers to thin components with a
regular system of cracks that are subject to low-frequency vibrations. In this case,
equation (10) is sufficiently accurate.

If the composite is thin and the crack spacing is small, the effects of in-plane heat
conduction and thermal resistance in the thickness direction are negligible. Then the rate
of heat loss or gain through the surface of the element is

(11)

where h is the heat transfer coefficient, Ts is the surface temperature, Ta is the ambient air
temperature, ε0 is the emissivity, β0 is the Stefan-Boltzman constant, and subscripts “u”
and “l” identify the upper and lower surfaces, respectively. Note that in many situations
radiation from the surface becomes comparable to convection only at high elevations, so
the term in the square brackets is often negligible.

If the ambient temperature on both sides of the component is the same, the closed-form
expression for the elevation of the surface temperature over the ambient air temperature
is available by assumption that radiation can be neglected:

(12)

If the component is subject to a periodic in-plane stress σ = σmsinωt, where ω is the
frequency, the surface temperature elevation obtained subject to the requirement that ∆T
remains non-negative during the entire cycle of motion is given by

(13)

As follows from equation (13), a difference between the surface and ambient air
temperature increases proportionally to the frequency and to the square of the applied
stress. Note that the exact solution of the heat transfer problem presented in the next
section illustrates that after the transient phase temperature reaches a steady-state
constant value. Therefore, in the following discussion a reference is made to the mean
temperature elevation

3.1. NUMERICAL EXAMPLES

Consider the SiC/CAS material that was experimentally studied by Beyerle et al. (1992).
Details and discussion on the properties used in the analysis can be found in the paper of
Birman and Byrd (2000c). The mean elevated surface temperature was calculated using
the half-length of the crack equal to 0.18 mm, and the applied stress amplitude and
frequency equal to 1 MPa and 10 Hz, respectively. The result of calculations yields
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∆Tave = 0.038°C. On the other hand, using the data employed to generate numerical
results in the next section, one obtains the mean temperature elevation ∆Tave = 3.39°C and
1.70°C, for h = 10 and 20 W/m2C, respectively. Therefore, the feasibility of using
thermography to detect initial failure in cross-ply and plain weave woven CMC is
supported by these results.

4. HEAT TRANSFER PROBLEM IN CROSS-PLY CMC WITH MATRIX
CRACKS IN A TRANSVERSE LAYER

The regular system of cracks analyzed in this section is shown in Fig. 3 for the case in
which these cracks are present in the central transverse layer. Due to symmetry, it is
possible to analyze a representative cell that is also shown in Fig. 3. The spacing
between the cracks being quite small (less than 0.3 mm, according to reported
experimental data), it is possible to neglect the effect of heat conduction in the x-direction
and to treat the heat transfer problem as a one-dimensional dynamic process, according to
Fig. 3.

The present section illustrates the solution of the problem of heat transfer for a
symmetrically laminated cross-ply CMC laminate with a regular system of matrix cracks
in the central transverse layer. Due to linearity of the problem, the elevated surface
temperature associated with cracks in other layers can be obtained by superposition, as
long as the cracks remain symmetric relative to the middle plane of the component.

Regularly spaced cracks in the central transverse layer (s = spacing)

Fig. 3. Composite with matrix cracks in the central transverse layer and a representative
one-dimensional cell used in the analysis.

Based on the analysis in the previous section, the heat flux into the component subject to
dynamic stresses with the frequency ω is a sinusoidal function of time varying with the
frequency 2 ω . Therefore, the heat transfer problem for a representative cell can be
modeled as shown in Fig. 4. The mathematical formulation of this problem is given as
follows:
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Fig. 4. Representative cell.

(14)

(14a)

(14b)

(14c)

where T* = (T – Tambient), and k and α are the thermal conductivity and diffusivity of the
composite in the z-direction.

It is necessary to specify the conductivity in the z-direction. The conductivity of the i-th
layer with isotropic fibers oriented in either x or y-direction can be obtained as

(15)

where Vfi and Vmi are volume fractions of the fibers and matrix, and kf and km are the
conductivites of the fibers and matrix, respectively.

The average conductivity of the laminate with an equal number of equal-thickness layers
oriented in the x and y directions is

(16)

where subscripts m and n identify the layers oriented in the x and y directions,
respectively.

Now the thermal diffusivity can be calculated as α  = ρCp/k where ρ is the mass density
and Cp is a specific heat.
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The problem is solved using Duhamel’s theorem (Ozisik, 1993) for heat transfer within
the component subject to a time dependent boundary condition at z = 0. According to
this theorem, the temperature distribution is the function of the z-coordinate and time that
can be represented by

(17)

where

(18)

and Φ (z,t) is the solution to an auxiliary problem defined as:

(19)

(19a)

(19b)

(19c)

The solution of the latter problem is

(20)

where Φ s and Φ t are the solutions of the following steady state and transient problems:

(21)

(21a)

(21b)

(22)

(22a)

(22b)

(22c)
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The solution of the problem given by equations (21) is

(23)

The solution Φ t can be obtained by using a separation of variables technique (Ozisik,
1993) as:

(24)

The eignevalues λn are found from the boundary condition at z = g (equation 22b) as the
roots of the following equation:

(25)

The constants Cn in equation (24) specified from the initial condition and the
orthogonality of the eigenfunctions are given by

where the normalization integral N(λn ) is

(26)

(27)

Substituting the results from equations (23-27) into equation (17) and simplifying yields
the following expression for the T* .

(28)

where

(29)

4.1. NUMERICAL EXAMPLES AND DISCUSSION

The following examples were considered for the case where k = 1.25 W/mC, h = 10.0
W/m2 C (the value h = 20 W/m2C is also considered in Fig. 5), E = 93.2 GPa,
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a = 0.0001 m, s = 0.00025 m, and g = 0.001 m. The value of qza = 33.887 W/m2  was
calculated based on the stress amplitude equal to σm = 20 MPa. The frequency of
vibrations was taken equal to ω = 62.832 rad/s.

The rise of the elevation of the mean surface temperature over the ambient air
temperature is shown as a function of time in Fig. 5. As follows from this figure, the
transient temperature increases rapidly (within 10-l5 minutes, in this example) when a
component is subject to periodic stresses. Once the transient temperature variations have
decayed, the mean surface temperature rise, T* (g,∞), is given as T*(g,∞) = qz a /h. This
agrees with a simple energy balance over the entire region shown in Fig. 4 because the
average rate of heat generation into the control volume is qza  and this heat must be
dissipated by convection at the surface. Note that the simple solution obtained in the
previous section yields the steady-state mean temperature equal to 3.39°C and 1.70°C for
h = 10 and 20 W/m2 C, respectively, i.e. exactly the results obtained by the present
analysis. As follows from Fig. 5, decreasing h increases time corresponding to a
noticeable transient portion of the response. Increasing the dimension g (i.e., a thicker
specimen) also results in a longer time of transient response.

The periodic oscillations in T* are much smaller than the mean surface temperature rise,
as shown in Fig. 6. These oscillations are too small to be measured reliably with current
differential thermography techniques.

It is also interesting to note that increasing ω increases the heat flow rate qza and thus the
mean temperature rise over the ambient. Therefore, higher-frequency vibrations can be
appropriate for a thermographic nondestructive evaluation of CMC components.

Fig. 5. Temperature rise as a function of time.
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Periodic temperature component

Fig. 6. Periodic temperature oscillations.

5. CONCLUSIONS

The paper presents the solution of several problems related to nondestructive testing of
thin-walled ceramic matrix composite components using thermography. In particular, the
stiffness of cross-ply CMC components with matrix cracks in longitudinal and transverse
layers undergoing small-amplitude forced vibrations is discussed. The method for an
estimate of the stiffness of a component is suggested for the case where the cracks remain
open during the entire cycle of motion.

The problem of heat generation in a vibrating component with a system of regular matrix
cracks in transverse layers is solved by assumption that kinetic energy is negligible.
Based on the energy analysis, the closed-form expression for the surface temperature rise
is obtained for the steady-state heat transfer problem.

The problem of heat transfer within a cross-ply CMC component with regular matrix
cracks in the central transverse layer is also considered. The latter solution illustrates that
the time interval corresponding to transient thermal response is relatively short. After
transient variations of temperature have been reduced to a negligible level, the predicted
mean surface temperature rise corresponds to the solution obtained based on the
approximate energy-based analysis. At the same time, periodic temperature oscillations
superimposed on the steady-state mean temperature are negligible and they should not
affect the measurements.

Numerical examples presented in the paper illustrate that the mean surface temperature
rise in thin-walled CMC components with matrix cracks subject to small-amplitude
forced vibrations is sufficient to recommend thermography for damage detection. This
method should be even more sensitive to damage, if the cracks propagate into
longitudinal or angle-ply layers resulting in frictional heating and an even higher surface
temperature.
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A SHELL-BUCKLING PARADOX RESOLVED

C.R. CALLADINE
Department of Engineering
University of Cambridge
Cambridge CB2 1PZ, U.K.

1. Introduction

This paper is concerned with the buckling of uniform thin-walled cylindrical shells
under uniform axial compressive loading.

The classical, linearised theory of buckling (e.g. Timoshenko and Gere, 1961)
predicts that

σ cl /E ≈ 0.6 t/R. (1)

Here σcl is the (compressive) buckling stress,

E is the Young modulus of elasticity of the material,
t is the thickness of the shell wall, and
R is the radius of the shell.
Now it has been known since the 1930s that such shells actually buckle at loads

considerably below those given by equation (1); and over the following decade or so

Figure 1. Experimental buckling loads for cylindrical shells, normalised with respect to the classical
buckling prediction (1) and plotted versus the radius/thickness ratio. Circles are data from Brush and
Almroth (1975). The vertical bars at R/t ≈ 1800 are data from Lancaster et al. (2000), and are referred to
in section 11: the longer bar corresponds to cases where imperfections were deliberately introduced,
while the shorter bar relates to cases where there were no such imperfections.
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σmean /E ≈ 5( t / R)1.5 ,

many experimental studies of the buckling strength of thin cylindrical shells have been
made. By the mid-1950s it was possible to assemble data from many such studies.
Thus, Fig. 1 shows a plot of almost 200 experimentally measured buckling strengths
normalised with respect to the classical prediction (1), against R/t.

It is immediately obvious from this plot (a) that for any given value of R/t there is
considerable scatter in the buckling performance; and (b) that the measured strengths
become smaller in comparison with the classical prediction as R/t increases.

A replot of the data of Fig. 1 on double logarithmic scales is given in Fig. 2 (a). It
is now clear that the experimental data lie in a well-defined band corresponding to the
buckling-stress level being proportional to (t/R )1.5 , rather than to ( t/R ) as in the

classical theory. The plot also shows the best-fitting straight line, and parallel lines at ±
1 and 2 standard deviations from the mean. Practically all of the data-points lie within
two standard deviations; and these two practical upper and lower bounds on the data
correspond to the mean stress multiplied by 2 and 0.5 respectively.

The paradox that I shall consider in the present paper is concerned with the clear
difference between the empirical observation

(2)

Figure 2. Double-logarithmic plot of experimental data on thin cylindrical shells, as in Fig. 1, with
buckling stress normalised with respect to the Young modulus E, versus radius/thickness ratio. The heavy
best-fitting line has a slope of –1.5; and lighter parallel lines at 1 and 2 standard deviations from the
mean are also shown. The classical theory (1) is represented by a line of slope –1. (b) Self-weight
buckling data from experiments of Calladine and Barber (1970) and Mandal and Calladine (2000) on
open-topped silicone-rubber shells, plotted as the normalised self-weight vertical stress at the base of the
shell versus radius/thickness ratio. The five lines from (a) are also shown.
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where σ mean is the mean experimental buckling stress, and the classical prediction

given in equation (1). How can we explain the empirical observations in terms of
rational mechanics?

2. Remarks on previous work in this area

Th. von  Kármán (von Kármán, Dunn and Tsien, 1940; von Kármán and Tsien, 1941)
grappled with this as an example of a non-linear problem. He described an empirical
relationship  similar to (2), on  the basis of the much smaller experimental data-set
available in 1940, but with an exponent of 1.4 rather than 1.5. He set up his famous
non-linear governing equations; but he did not provide a convincing explanation of (2).

Koiter (1945) made a seminal early study in this field. He took an asymptotic
approach to the non-linearities, and focussed attention on two questions, as follows.
(a) Why are the experimentally observed buckling loads significantly lower than the
predictions of the classical theory?
(b) Why do the experimental observations have so much scatter?
His explanation was in terms of imperfection-sensitive buckling loads and the
unavoidable presence of small imperfections; and this has been abundantly fruitful in
the general field of the mechanics of buckling and stability. But in Koiter’s approach to
the present problem one asks, essentially, why the experimental observations do not
agree with (1). That is actually a different question from the one that I take to be more
central, viz. why does (2) have  an exponent of 1.5 rather than 1.0 ?  This, then,  is my
main task in the present paper.

3. Method of investigation

Most papers on the buckling of thin-shell structures start with the classical theory, and
use it as a foundation  for their argument. But in my view the classical theory is not a
good starting point if we wish to explain the exponent 1.5 in (2) : and I believe that we
need to adopt an altogether different approach if we are to make progress.

The argument that I shall present in order to resolve the paradox connects together
a number of ideas and phenomena which are not particularly new or difficult in
themselves. Some of these connections occurred unexpectedly, as a consequence of
chance  encounters and conversations – which is of course a widespread, if largely
unacknowledged, procedure in scientific discovery. And there were many blind alleys
along the way. Thus, the point reached at the end of the paper was not attained by the
application of some carefully formulated program or method, but by a haphazard chain
of surprising connections. For this reason I am giving a somewhat anecdotal account of
the development of the main ideas.
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4 Experiments on self-weight buckling of open-topped cylindrical shells

My students and I, together with R.J. Denston, our laboratory technician, developed a
simple method of casting uniform, thin silicone rubber shells in a rotating mould
(Calladine and Barber, 1970; Mandal and Calladine, 2000). The shells were cast with a
thick disc closure at one end, and were open at the other. When placed on a flat,
horizontal table with the open end upwards, the shells were incapable of standing
upright under their own weight. But if horizontal rings were successively cut off the
top, eventually a height, Lcr , was reached at which the shell could just stand up under

its own weight.
Barber’s shells were of radius ~90 mm, and an experimenter’s two hands were

adequate to support the shell in a cylindrical shape in an attempt to stand it up.
Mandal’s shells were cast in a larger mould of radius ~120 mm; and it was necessary to
have the hands of two experimenters active in the process of finding whether a shell of
given height could be made to stand unaided.

Figure 2(b) shows the results of the experiments of Barber and Mandal. The
values of R/t ranged from 75 to 370. The observed critical heights Lcr have been

normalised with respect to the weight of material per unit volume (ρg ) and the Young
modulus of elasticity (E) of the material. The relevant material parameter E / ρg was
obtained from simple assays of the self-weight deflection of a horizontal beam of
rectangular cross-section, cast from the same batch of rubber solution that had been
used for the shell.

The thickest shells, with the smallest values of R/t, collapsed like the falling of a
heavy curtain, with axisymmetric buckles at the base; and their critical heights almost
reached the classical prediction. But for most of the shells the buckling involved a
falling inwards at the top, like the collapse of a wall.

We were surprised that the results from all of the specimens lay on, or close to, a
single straight line in the log-log plot of Fig. 2(b): they did not display the expected
range of scatter that is familiar in the testing of cylindrical shells by external forces
applied through conventional end-fixtures (Figs. 1, 2(a)). And we did not understand
why that should be.

Now the experiments recorded in Figs 1 and 2(a) (which I shall refer to as
“ordinary” experiments) were conducted on cylindrical shells with the same sort of end-
fitting at both ends; and the self-weight of the shells was usually a tiny fraction of the
imposed axial load. In our experiments, per contra, the top edge was free and the
loading was entirely by self-weight. In one sense, therefore, the two sets of experiments
are not comparable. Nevertheless, it seems reasonable to attempt a comparison by
taking as a characteristic stress in our experiments the self-weight stress Lcr ρg at the

base of the shell, and plotting this as σexp in Fig. 2(b). For the sake of clarity the mass

of points in Fig. 2(a) has not been transferred to (b), but only the mean line and the
parallel lines at  ±1 and 2 standard deviations from the mean.
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The remarkable outcome of this exercise, which was a great surprise to us when
we first did it, was that the self-weight buckling data lay very close to the mean line of
Fig. 2(a). Now it is true that our range of R/t values was not as extensive as that of the
data in Figs 1 and 2(a). Nevertheless, the close coincidence of these two sets of
experimental data suggests strongly that the two buckling situations are indeed closely
related. Evidently the lack of scatter in the self-weight buckling data is attributable
somehow to the different loading and boundary conditions; and I shall return to that
point later, in section 11.

I shall therefore take as a working hypothesis that the buckling phenomena in
“ordinary” buckling experiments are closely related to those of self-weight buckling.
This leads directly to the obvious remark that if we can understand the self-weight
buckling phenomena, we shall have made progress in understanding the paradoxical
buckling of “ordinary” cylindrical shells under axial loading.

5. Computational study of self-weight buckling

Our next task, therefore, was to analyse the buckling behaviour of an open-topped shell
under its own weight. We (Mandal and Calladine, 2000; Zhu, Mandal and Calladine,
2000) found this to be a fairly straightforward task. We used the standard ABAQUS
finite-element package (Hibbitt et al., 1995) to analyse the finite displacements of a
particular experimental shell in Mandal’s series, having R = 120 mm, t = 0.58 mm and
L = L cr = 230 mm – the experimentally observed value. An advantage of the computer

over a laboratory experiment, of course, is that the actual gravitational acceleration g
can be multiplied at will by a “load factor” G : so G = 1.0 corresponds to the
experimental “just stable” critical condition. Once a suitable imperfection pattern had
been found (see Mandal, 1997 or Mandal and Calladine, 2000, for details) the
computations ran smoothly, with the help of the “Riks” algorithm for following
descending loads. Figure 3 shows a plot of G against radial displacement at two
different material points P and Q, whose locations on the shell is indicated in Fig. 4(a).
There was hardly any sign of buckling until G reached a value of around 1.8,
corresponding to the self-weight vertical stress at the base reaching almost the classical
buckling value. But then the load fell very sharply, and deflections only began to
increase significantly when the load factor had fallen to G ≈ 1.3. Thereafter, the radial
displacement at the two chosen points increased steadily while G fell slowly to a value
of around 1.0.

We can describe this behaviour as a “post-buckling plateau”, although as a plateau
it is not absolutely flat. The “plateau” extends to radial displacements of around 10 wall
thicknesses, with relatively little change in load-factor G. Further computations showed
that the initial buckling load was only sensitive to the amplitude of the initial geometric
imperfection if that imperfection featured a “dimple” near the base of the kind to be
described below. But in any case the level of the post-buckling “plateau” was
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insensitive to the pattern or amplitude of any initial geometric imperfection.
Of particular interest is the fact that the post-buckling “plateau” occurs at around

the experimentally-observed critical height Lcr . And computations on geometries

corresponding to other experimental specimens at critical height showed essentially the
same feature.

Thus we may conclude that, somehow, the self-weight experimental buckling
assay is picking out the almost-stable behaviour of the post-buckling “plateau”. The
way in which the “plateau” is actually reached depends evidently on the pattern of
assumed initial geometric imperfections. But it is not hard to imagine that the process
of supporting the shell by the fingers of at least two hands, in attempts to get it to stand
up, will introduce a wide range of imperfection patterns.

6. The post-buckling “plateau” mode

Our next task is to investigate the special post-buckling mode that grows at an almost-
constant “plateau” load-factor, in the hope of finding a simple way of modelling and
understanding its main features.

Mandal and Calladine (2000) have presented contour plots of the radial deflection
of the shell in the “plateau” mode. But for present purposes the sketch of Fig. 4(a) is
adequate. The key point is that there is an inward-directed “dimple” near the base,
while vertically above the dimple the shell wall “leans outwards”. Figure 5 shows a
series of profiles of the leading generator as the deflection increases; and it is clear that

Figure 3. Plot of gravity load factor G against normal deflection at two points on the central generator of
an open-topped shell, in an ABAQUS computation: see Mandal and Calladine (2000) for details.
Material points P and Q on the symmetry meridian are identified in Fig. 4(a).
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as the dimple becomes deeper – i.e. as its current centre deflects further inwards – it
also extends further up the shell; and indeed the dimple also becomes more extensive
around the circumference. And when the dimple enlarges in this way, the upper part of
the shell tilts outwards at an increasing angle.

There is a simple first-order kinematic interpretation of this well-defined post-
buckling mode. If we suppose that the leading generator within the dimple deforms
inextensionally, then it follows that its inwards deflection is accompanied by a small
vertically-downwards movement of the shell wall at the upper boundary of the dimple.
Then, if we consider the moiety of the shell above this level as an open-topped storage-
tank standing on a level foundation, but which is “sinking” in the small region over the
dimple, we can see the outward tilting of the shell wall above the dimple as an
elementary example of inextensional deformation of the shell wall : cf Kamyab and
Palmer (1989) or Calladine (1983  §  6.5.1).

7. Focus on the dimple

In an unrelated computational assay, Guggenberger, Greiner and Rotter (1999) have
made an interesting and relevant computational study of the development of dimples in

Figure 4. Schematic representations of the post-buckling modes of three thin-walled cylindrical shells,
showing a common dimple motif. All shells are built-in at the base. (a) Open-topped shell loaded by
gravity, as described by Mandal and Calladine (2000). (In section 10 it is postulated that the weight of
portion ABBA of the shell provides the force that holds the dimple in place.) (b) Shell with its top closed
by a diaphragm, loaded vertically by a localised force F at the edge. This situation has been investigated
by Guggenberger et al. (1999) in the context of localised support systems for silo structures. (c) As (b),
but with an idealised small circular dimple of radius r, whose surface has been inverted to the same
radius of curvature as that of the parent shell. Inextensional deformation within the dimple allows F to
move a small distance u.
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thin cylindrical elastic shells, under the action of localised axial forces applied at an
edge. The motivation for Guggenberger’s study was an important problem in the design
of cylindrical storage silos that are supported on a number of discrete columns at the
base: it is obviously important for the engineer to understand the conditions under
which local buckles may form.

Figure 6 shows a typical force-displacement curve for a shell with its end closed
by a diaphragm, which is loaded as shown in Fig. 4(b). Buckling occurs when the peak
load has been reached, whereupon a dimple forms. Guggenberger found that the load
remains roughly constant as the dimple grows: there is a sort of first-order “plateau” in
the force/deflection characteristic. He also found that the response depended primarily
on the total force F, and only to a small extent upon the width of the shell’s
circumference over which the load is spread, up to a width of order 

The “plateau” values of Guggenberger’s curves are consistent with the formula

Fh ≈  1.0 Et 2.5 / R0.5 . (3)

His shells were held circular at the loaded edge, but were free to rotate about the local
tangent; that is, his edge was “hinged” (hence subscript h).. Zhu (see Zhu, Mandal and

Figure 5 (on the left). ABAQUS results for deflected profiles of the generator PQ in Fig. 4(a), at various
stages of the development of the post-buckling mode. The shell had radius 120 mm, thickness 0.58 mm
and height 230 mm. The post-buckling profiles were practically unchanged when the thickness of the
shell was altered : see section 10.

Figure 6 (on the right). ABAQUS results for a shell loaded as in Fig. 4(b) : load factor versus maximum
inwards deflection in the  dimple. The load is factored from an arbitrary “reference load”, and a
quantitative formula (4) for the minimum load is indicated. The behaviour is similar when the thickness
of the shell is altered : see Zhu et al. (2000).
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Calladine, 2000) made similar calculations, but with the edge of the shell restrained
from rotation about the local tangent; and he also found that the force remained
constant (to first order) as the dimple grew in size, in accordance with

These results suggest the beginnings of a simple explanation for the post-buckling

Inversion of a thin spherical shell

The situation is most readily described with respect to Fig. 7, which shows
schematically a diametral cross-section of the shell. The central portion of the shell has

had been cut out, turned over, and re-united with the parent shell around its edge. (Here

, where a and t are

Practically all of the elastic strain energy of the distorted shell resides in this

(4)

The form of equations (3) and (4) is the same; and the difference in the numerical
constants doubtless reflects the difference in boundary-conditions.

mode shown in Figs 4(a) and 5. But it will be useful first to introduce another striking
result which helps with the quantification of these physical effects.

8.

Several authors have studied the mechanics of the inversion of a thin-walled elastic
spherical shell under the action of a localised radial load, acting inwards: see Mescall
(1965), Bushnell (1967), Ranjan and Steele (1977), Pogorelov (1988), Nowinka and
Lukasiewicz (1991) and Holst and Calladine (1994). The general picture is the same in
all these studies; and it agrees with our experience of pushing a finger into a toy rubber
ball which has been pierced in order to eliminate any internal pressure.

been inverted, and it has the same geometrical configuration as if an axisymmetric cap

we are concerned only with axi-symmetric inversion, i.e. the stage before the edge of
the indentation begins to go polygonal.) The actual inverted portion has some bending
stress, of course; but the corresponding elastic strain energy is small. The key point is
that the inverted surface is isometric with the original sphere : the deformation is
inextensional. The above statements would be strictly true if the boundary of the
inverted portion was a cut, and the junction between the two portions involved a sharp
crease, as shown on the right in Fig. 7. But the deformed meridian actually makes a
smooth transition between the original and the inverted portions, and the studies cited
above have shown that the two portions of shell are separated by a boundary layer or
“knuckle”, whose width in the meridional direction is of order
the radius and thickness of the spherical shell, respectively.

boundary layer. Now it is not difficult to see that if the width of the boundary layer
were smaller, the strain energy of meridional bending would be larger, while the strain
energy of circumferential stretching would be smaller; and vice-versa if the width were
larger. (If the width became very small, as on the right in Fig. 7, the bending energy in
the sharp crease would become very large, while the stretching energy – of the
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practically inextensional distortion – would be very small). The total elastic strain
energy is minimum when the overall width of the boundary layer is equal to around
4 , with the precise value of the constant depending on the way in which the width is
defined; but with the bending and stretching energies being equal in any case.

Holst’s numerical studies (Holst and Calladine, 1994) show that the relationship
between force P and inwards deflection w0  is given by

By evaluating we can obtain an expression for

πr,. and using the small-angle approximations

(6)

(7)

(5)

for moderate values of

the total elastic strain energy stored in the boundary layer. Hence, dividing this by the
circumference of the boundary layer 2

(where r is the radius of the boundary layer and ψ is the “kink” angle), we obtain the
following formula for the elastic strain energy per unit length of boundary layer, Ω:

Figure 7 (on the left). Cross-section of an elastic thin-walled spherical shell that is being inverted by a
central force. To  the right is shown a  truly inextensional  mode of  deformation, with a sharp crease of
angle ψ, while on the left the actual smooth boundary-layer or “knuckle” is shown.

Figure 8 (on the right). Perspective general schematic sketch of a curved boundary-layer crease in a
surface which has been inverted. The surface may originally have been plane, or cylindrical, or spherical.
The bold line represents the crease, and families of light lines indicate the curvature of the outer and inner
portions of the surface. At the point marked on the crease, is defined as the jump in curvature (of
lines parallel to the crease) as one crosses the crease. When the picture represents a portion of the
boundary-layer ring in Fig. 7,
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Of particular interest is the fact that t appears in this expression, just as it does in
Guggenberger’s formula (3), with an exponent of 2.5. If, instead, the width of the
boundary-layer had been constant, the strain energy of bending would have been

proportional to Et
3 ψ2

, because the curvature would then be proportional to ψ and the

bending stiffness of a shell element is proportional to Et3 (e.g. Timoshenko and Gere,
1961). However, as we have seen already, the width of the boundary-layer is
proportional to ; and the upshot is that the exponent of t in (7) is 2.5 instead. As
we shall see below, the exponent 2.5 in (7) will lead to the sought-after exponent 1.5 in
(2).

9. A simplified analysis of Guggenberger’s problem

The establishment of the strain-energy formula (7) enables us to make a simple and
illuminating re-derivation of Guggenberger’s result that the force F required to hold a
dimple in place in a cylindrical shell of radius R (Fig. 4(b)) is independent of the size of

the dimple,  to first order, and is proportional to
For the sake of simplicity consider a dimple bounded by a circle of radius r, as

shown in Fig. 4(c), and with the inverted portion in the form of a cylinder of radius R.
Just as for the inversion of the spherical shell, we shall assume that the elastic strain
energy of distortion resides only in the boundary layer.

In order to evaluate the total elastic strain energy we need to know values of ψ
around the circle; and for small values of r/R (r/R<1/3, say) we find that ψ is uniform ;

At this stage it is not obvious how to proceed, because formula (7) includes a, the radius
of the spherical shell for which it was derived. But further analysis shows that the same
formula applies to a boundary-layer formed in an initially plane or cylindrical sheet,
provided the term (2/a ) in (7) is replaced by , where ∆ κ is the jump in curvature of

the surface, measured parallel to the boundary layer, as we cross over the crease in the
idealised form of the boundary layer. Figure 8 shows explicitly how ∆κ is defined. For
the case of the spherical shell, there is a jump from +1/a to – 1/a as we cross the crease;

(8)

and so (7) is recovered. But for the dimple in the cylindrical shell there is a jump from
to 0 at points on axial or transverse diameters of the dimple; and indeed

(9)

uniformly around the boundary layer.
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For a dimple of radius r we may therefore evaluate U, the total elastic strain
energy in the boundary-layer:

Next, let us evaluate the axial displacement u of the top of the dimple, by using
the kinematic condition that the axial generator in the dimple is inextensional. This
gives

to first order, by use of a Taylor expansion.
Now the dimple is held in position by an axial force F. Since there is negligible

elastic strain energy stored in the inextensionally-deformed portions of the shell, U is a
good approximation to the total elastic energy stored, and so

Note, in particular, that since both U and u are proportional to r3 , the final expression
for F is independent of r.

Apart from the value of the constant, (12) is of precisely the same form as
Guggenberger’s approximate empirical expression (3), and (4). The difference in
values of the constant is doubtless attributable to the over-simplified circular profile
assumed for the boundary-layer that forms the outer rim of the dimple; and it seems
likely that a more elaborate and realistic and kinematic exact version of the dimple
shape would give a better value for the constant. But for present purposes that is a
secondary matter : the important result is the way in which F comes out as proportional

to , and independent of the dimple-size r.

10. A model for self-weight buckling

We are now in a position to make a simple first-order theoretical analysis of the post-
buckling mode for the open-topped shell. The basic idea (see Fig. 4(a)) is to equate the
self-weight of the portion of the shell ABBA above (say) the centre-line of the dimple to
the constant force F necessary to hold the dimple in place. Since the weight of the
portion ABBA is proportional to the area multiplied by the thickness t, it is immediately

clear that the post-buckling behaviour will involve thickness as t
1.5

, as in the
experimental result (2).

(10)

(11)

(12)
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Putting

(13)

and substituting for F the weight above the centre of the dimple in the curves shown in
Figs 3 and 5, we find that the value of C rises from ~1.5 to ~2 as the inwards deflection
at the centre of the dimple increases from 0.1R to 0.03R. Since the distribution of
membrane stress within the buckled shell is actually rather complicated (see Mandal
and Calladine, 2000) the agreement between the two cases is encouraging. (Here, in
computing the area ABBA, the width BB has been calculated from the maximum

deflection w 8w0  by the conventional formula BB ≈ ( 0R)0.5
, based on the theorem of

intersecting chords of a circle. If, instead, the width is taken between points B of
maximum outwards deflection, then C turns out to be practically constant, but with a
somewhat higher value.)

Although there is room for argument about the numerical constants in the various
expressions above, the way in which the leading variables enter the formulae is well-
defined: the physical relationship between the dimples in the different situations shown
in Fig. 4 is clear.

We have built here a quantitative analysis of the post-buckling mode under self-
weight of the open-topped shell onto the foundation of the simpler problem of the
axisymmetric inversion of a thin, spherical shell. But there is also a strong qualitative
connection between the spherical shell and the post-buckling mode. Thus, in all the
modes of deformation shown in Figs 4, 5 and 7, the shells are behaving inextensionally
throughout, except in the narrow boundary-layer which separates the inextensional
moieties. The width of that boundary region – which is uniform in all our present
examples – depends on a local interaction between bending and stretching effects in the
shell. In this sense the spherical shell provides a good model for both the post-buckling
mode in the self-weight buckling problem and also for Guggenberger’s situation. The
only way in which the mode changes as the thickness of the shell changes is that the
width of the boundary layer changes. Thus, whereas in many shell problems (e.g.
Koiter, 1945; Calladine, 1983) it is useful to work in terms of dimensionless variables
made by normalising both deflections and characteristic modal wavelengths with
respect to the thickness of the shell (raised to a suitable exponent), it is important in all
of our modes to plot absolute values of these quantities (or, equivalently, to normalise
them only with respect to the (constant) radius of the shell), because the overall patterns
of deformation (i.e. apart from the details of the boundary-layer) do not depend upon
the shell’s thickness at all – just as in the case of the spherical shell

11. Experimental “scatter” of buckling loads for “ordinary” shells.

Having now explained the provenance of the mean experimental data (2), we are left
with the problem of explaining the significant “scatter” in buckling loads that is found
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in the course of testing “ordinary” shells with conventional end-fittings, as seen in Figs
1 and 2(a).

Now it is clear that the post-buckling mode shown in Fig. 4(a) would not be able
to occur if the top of the shell were to be held circular: the inextensional  “storage-tank-
like” mode of the upper part of the shell obviously requires the top edge to be free. The
free upper edge also makes the shell statically determinate as a membrane (e.g.
Calladine, 1983, §6.5.1). Thus our crude estimation of F in Fig. 4(a) as the weight of
the portion of the shell above the dimple would not be at all reasonable if the top were
held circular. Hence it seems likely that the “scatter” observed in the testing of
“ordinary” shells is somehow directly related to the statical indeterminacy of those
structures.

This line of argument is supported by some unexpected results obtained by
Lancaster, Palmer and Calladine (2000) in the testing of an “ordinary” cylindrical shell
made from Melinex sheet ( R/t ≈ 1800) to which the end discs were secured frictionally
by circumferential  belt-like clamps. The results of many tests on this shell (see the
caption of Fig. 1) came unexpectedly high in comparison with otherwise comparable
experiments, whether or not imperfections had been introduced deliberately; and it is
most likely that the unusually good performance of the shell is attributable to the
effective near static-determinacy of a shell having these rather unusual frictional
boundary conditions.

If the absence of experimental scatter is indeed attributable to boundary
conditions that make a shell statically determinate, then practical benefits may well
accrue to studies of the detailed design of end-conditions, in order specifically to
achieve situations close to static determinacy.

12. Summary of the chain of argument

The analysis which I have put forward may be summarised as follows.
1. The experimentally determined stress level at the base of an open-topped

elastic shell that can just stand up without buckling under its own weight agrees
very well with the mean buckling stress recorded in many experiments on
“ordinary” cylindrical shells under uniform axial loading. In either set of
experiments

(2, bis)

2 . This suggests a working hypothesis that the two problems are closely related.
3. Therefore, if we can explain empirical formula (2) in the context of self-weight

buckling of open-topped shells, we shall also have explained the mean buckling
strength of “ordinary” cylindrical shells.
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4. Finite-element analysis of the self-weight buckling of shell specimens suggests
that there is a post-buckling mode for which the load remains near a “plateau”
value. The mode involves the growth of a dimple near the base, which allows
the upper part of the shell to deform inextensionally, falling outwards over the
dimple region.

5. Guggenberger’s analysis of dimples near the edge of locally-loaded shells
shows that the dimple supports a more-or-less constant force proportional to

, irrespective of the size of the dimple. And essentially the same
result may be obtained by a simple argument based on the energy of inversion of
a thin spherical shell.

6. The experimental observations on self-weight post-buckling are consistent
with the force holding the dimple in place being provided by the weight of the

shell vertically above the dimple, so that the critical height depends on t
1.5

,
other things being equal.

7. Finally, the absence of “scatter” in experimental self-weight buckling assays
on open-topped shells may be attributed to the absence of statical indeterminacy
in such shells.

13. Closing remarks

In this paper I have attempted to resolve an ancient paradox in shell buckling theory. It
is for the reader to judge whether or not I have succeeded in my aim. The style of my
work is, of course, very different from that of many papers in the field of the theory of
shell structures, which develop a rigorous mathematical trail from axiom to conclusion.
Here, instead, I have assembled an argument in the form of discrete links in a chain.
Whether or not I have succeeded depends, therefore, on each of the links holding good;
for a chain is only as strong as its weakest link.

My key tool has been the idea that the post-buckling mode for an open-topped
shell is inextensional everywhere except in a narrow boundary-layer, whose behaviour
may be quantified approximately by analogy with the inversion of a spherical shell. In
this connection we might recall the boundary-layer in small-deflection shell theory
which likewise provided the key to the resolution of the famous controversy between
A.E.H. Love and Lord Rayleigh in the 1880s (Calladine, 1988).

I hope that my arguments will not be assailed on the grounds that they lack
absolute precision; for my “plateaux” are only flat “to first order”, and my numerical
constants are given only to about one significant figure. (That is why the usual term
containing the Poisson ratio does not appear in (1)). I take comfort from Francis
Crick’s remark to the effect that some problems are so difficult that they can only be
solved by a process of over-simplification. And indeed, my work is an example of what
Robert May has called “the lie that tells the truth”.
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BUCKLING ANALYSIS OF COMPOSITE PLATES

1. Introduction

The present paper summarizes a series of recent investigations that were
conducted by the authors which address the analysis of bifurcation buck-
ling, parametric stability, dynamic buckling and thermally induced dynamic
buckling of composite plates and shells. Various types of material behav-
ior are assumed including linearly elastic, nonlinearly elastic and thermo-
inelastic.

2 . Bifurcation buckling by global-local theory

In this section we consider the formulation of the bifurcation buckling of
composite plates in the framework of the recently developed global-local
plate theory of Williams (1999). In this theory the plate is divided into
several sublaminae. The displacement at a point within the plate is given
in terms of global coordinates that represent the location of this point, and
local coordinates that refer to the location of that point with respect to
the sublamina. The advantage of this theory is in its flexibility. It offers the
possibility of using various combinations of local and global displacement
components such that the accuracy and the computational expense could be
optimized. Furthermore the theory does not rely on any specific constitutive
law.

2.1. BASIC FORMULATION

Consider a rectangular laminated plate uniformly supported along the edges
0 ≤ x ≤ L x , 0 ≤ y ≤ Ly , subjected to inplane loads. The z coordinate is
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perpendicular to the plane of the plate with its origin located in the mid-
plane, and the thickness of the plate is h. The plate consists of N layers
such that the k’th layer occupies the region

According to Williams (1999), the displacement field can be considered
to be composed of global and local contributions such that at a point which
lies within the k’th layer

The global displacement field is continuous over the plate

thickness – h/ 2 ≤ z ≤ h /2, while which represents the
local variation of the displacement within the k’th layer, is zero outside the
layer namely for z < z k – 1 and z > z k . In the framework of the global-local
plate theory the global and local displacement fields are assumed to have
the following general form

where the functions are arbitrary but yet independent of
each other.

Using the principle of stationary potential energy, in conjunction with
the von Karman nonlinear strain-displacement relations, the assumed dis-
placement field, eqns. (1), (2), and in the absence of body forces, the fol-
lowing equilibrium equations are obtained (Williams, 1999)

with r = α = x, y and the summation
law is valid for repeating Greek subscript indices. In eqns. (3) the following
definitions have been used
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and represents the interfacial transverse stresses over the layer
boundary z = zk .

By adopting the classical linear stability theory, a critical load is sought
under which a perturbed equilibrium state adjacent to the prebuckling equi-
librium state position can exist. The equations that govern the change in
the displacement field with respect to the prebuckling equilibrium state are
eqns. (3a,b,d,e) together with the following linearized form of eqns. (3c,f)
(Gilat et. al., 2000a)

(6)

and the superscript 0 denotes the prebuckling state while terms free of it
represent the change from the equilibrium state just prior to buckling.

The equations of equilibrium are accompanied by boundary conditions
specifying either the essential conditions or the natural conditions on the
boundaries x = 0, Lx and y = 0, Ly . On the boundary surfaces z = ± h ,2
which are unloaded, the tractions vanish.

Since the assumed displacement field (2) is an arbitrary one, the con-
tinuity of tractions and the continuity/discontinuity of displacements still
have to be imposed. The interfacial traction continuity conditions are

(7)

As the possibility of debonding between the layers is considered, let the
jump in the displacement at the interface between two adjacent layers be
denoted by

(8)

In general, the displacement jump [ui](k ) depends on the constitutive re-
lations for delamination initiation and growth. An interfacial constitutive
model that expresses the displacement jump [ui](k ) in terms of the interfa-

cial traction can be represented the following general form

(9)
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Equations (3a,b,d,e), (6) together with the constraints, (7)-(8), the lin-
earized von-Karman strain-displacement relations and appropriate consti-
tutive laws for the material behavior within the layers, and the interfacial
behavior (9), establish the linear buckling problem in terms of the unknown

field variables Ur
i (x , y ) , µ (k ) s

i (x , y ), and σ (k ) I
iz .

2.2. BUCKLING OF LINEARLY ELASTIC SPECIALLY ORTHOTROPIC
PLATES

Consider a simply supported, specially orthotropic laminated plate. The
plate edges x = 0, Lx are subjected to uniform normal strains such that

where λ is the critical buckling parameter to be determined, and σ0 = 0,iz
i = x, y, z. The components of the displacement field, which represent the
change from the prebuckling state are described in terms of expansions in
the inplane coordinates x, y and the thickness coordinate z. The expansion
in the thickness direction is chosen to be

where a (k )s
m are coefficients. All but one of those coefficients are determined

by an orthogonalization procedure which ensures that terms of the same
power in the global and local polynomial expansion are independent.

The plane functional forms of the displacements which satisfy the simply
supported boundary conditions, and the interlaminar transverse stresses are
assumed to be of the following form

(11)

Furthermore, a linear interfacial constitutive model is adopted such that
(Aboudi, 1991)

(12)

where for perfectly bonded layers [ui](k ) = 0, i.e. R (k )
t = R (k )

n →  ∞ . By
substituting eqns. (10)-(12) into eqns. (3a,b,d,e), (6) and eq. (8), in con-
junction with eqn. (7), a set of linear homogeneous
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algebraic equations is derived for each wave shape combination (mn). (Here
are the number of terms

in the global and local expansions, respectively). This system of equations
can be put in the following general form of an eigenvalue problem (Gilat
et. al., 2000a)

( A + λB )v = 0 (13)

where A and B are matrices of coefficients, and v is the vector of unknowns.
The smallest eigenvalue λ which corresponds to an eigenvector of a flexural
mode, namely a displacement field with non zero out of plane components,
is the critical buckling parameter.

This formulation has been implemented by Gilat et. al. (2000a) for the
determination of the buckling loads of various types of laminated plates
whose laminae are either perfectly bonded or debonded, and comparisons
with available results have been shown.

3. Parametric stability of nonlinearly elastic composite plates

In this section the dynamic stability of nonlinearly elastic composite plates
subjected to periodic in-plane loading is investigated. This stability analysis
is performed by evaluating the largest Lyapunov exponent, the sign of which
indicates whether the system is stable or not.

3.1. BASIC FORMULATION - CYLINDRICAL BENDING

Consider a rectangular nonlinearly elastic anisotropic plate of an infinite
width in the y direction. The plate is uniformly supported along the edges
x = 0, L which are subjected to a uniform normal in-plane periodic load.
Neglecting the in-plane inertia, the response of the plate is governed by the
following classical plate theory equations (Whitney, 1987)

(14)

Here uz is the displacement in the transverse direction

where ρ is the material effective density and h is the plate thickness, and
dot denote differentiation with respect to time t. The stress and moment
resultants Nxx , Nxy , Mxx are defined in the usual manner. For a simply
supported plate the boundary conditions at x = 0, L are

(15)

The strain-displacement relations for the present cylindrical bending
situation are

(16)



www.manaraa.com

140

where ε0
xx , ε0

x y are the strains of the midplane of the plate.
Let the plate layers consist of unidirectional linearly elastic anisotropic

fibers reinforcing nonlinearly elastic resin matrix. The linearly anisotropic
elastic fiber material behavior is governed by the generalized Hooke’s law.
The non-linearly elastic behavior of the elastic isotropic matrix is modeled
by the generalized Ramberg-Osgood representation, which leads to strain-
stress relations of the form

(17)

where E is Young’s modulus, v is Poisson’s ratio, σ 0 and n are parameters
characterizing the material nonlinearity, is deviatoric

stress (δij is the Kronecker delta) and
The overall behavior of the two-phase composite is obtained by the mi-

cromechanical method of cells (Aboudi, 1991) which provides the nonlinear
anisotropic effective constitutive relations for the composite, relying on the
material behavior of its constituents. By adopting an incremental formu-
lation in conjunction with the micromechanical method of cells analysis,
and through application of the standard transformation from the mate-
rial to the plate coordinates, the instantaneous effective stiffness tensor CI

can be established such that the instantaneous response of the nonlinear
composite is given by (Gilat and Aboudi, 2000b)

(18)

where ∆ε and ∆σ are the increments of strains and stresses, respectively,
and all tensors are referred to the plate coordinates (x, y , z ).

As a result of the above formulation of the instantaneous behavior of the
composite, the incremental constitutive relations of the nonlinearly elastic
plate under cylindrical bending can be expressed as follows

(19)

where A I
i j, B I

i j, D I
i j are the instantaneous extensional coupling and bend-

ing stiffnesses of the plate.
The two first eqns. (14.) imply that the inplane stress resultants are

independent of x such that taking into account the boundary conditions
(15) their increments are given by

(20)
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A comparison between (20) and (19), yields the following expression for
the increment of the moment, ∆ Mxx , in terms of the external load and the
transverse displacement increments

(21)

where K1 and K2 are coefficients that can be expressed in terms of the
instantaneous plate stiffnesses.

In order to investigate the parametric stability of the plate, we consider
a time-dependent in-plane load which is the result of the following strain
imposed to the edges x = 0, L

(22)

where ε s and ε d are constants and θ is the load frequency.
Having established the incremental constitutive equations (19) for the

nonlinearly elastic plate, the third eqn(14) can be transformed into an in-
cremental form. Consequently, the variation of the displacement ∆uz within
a time increment is governed by

(23)

where etc.
Using the separation of variables, the deflection is assumed to have the

following form which satisfies the simply supported boundary conditions

(24)

It should be noted that the boundary condition on M xx is satisfied as
long as the initial configuration of the plate is symmetric with respect to
z = 0. In such cases, due to the fact that the loading is constant throughout
the plate thickness, B I

i j at the edges remain zero.
By employing the Galerkin method in conjunction with eqns. (21) and

(24), eqn. (23) is reduced to the following set of ordinary nonlinear differ-
ential equations

(25)
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3.2. PARAMETRIC STABILITY ANALYSIS

In order to investigate the stability of nonlinearly elastic plates under pe-
riodic in-plane loads, the concept of Lyapunov exponent is employed. Lya-
punov stability analysis of a dynamical system consists of the evaluation of a
corresponding set of characteristic numbers (e.g. Hahn, 1967). The negative
values of these characteristic numbers are known as Lyapunov exponents.
According to Lyapunov, the motion is asymptotically stable if all the expo-
nents are negative. A positive Lyapunov exponent indicates an exponential
separation between two initially close trajectories, namely instability of the
system (Chetaev, 1961). The system is stable if the largest Lyapunov ex-
ponent is not greater then zero. Consequently, it is sufficient to evaluate
the largest Lyapunov exponent in order to characterize the behavior of a
dynamical system.

According to Goldhirsch et. al.(1987) the Lyapunov exponents can be
determined by the following procedure. Consider the system of ordinary
nonlinear differential equations

(26)

The stability equation is defined to be
(27)

and y can be regarded as a small perturbation δv . Within the time incre-
ment 0 < t < t (1) , the system (27) with G (t = 0) is solved numerically for
the normalized initial conditions ⏐⏐ y(0)⏐⏐ = 1 where ⏐⏐. ⏐⏐ is the Euclidean
norm. This yields y (t ( l ) ).

Eqns. (27) with G (t = t (1) ) and with the following initial conditions

are then solved within the second time interval t (1) < t < t (2) yielding
v (t (2) ). The process is repeated for n time intervals while correspondingly,
the system (26) is solved to provide the values of v( t (l)) needed for the
evaluation of G. Namely, the incremental procedure is simultaneously used
to get the nonlinear response and the Lyapunov exponents.

For the n ′th time interval, let us define the value of the parameter µn
as follows

(28)

It has been shown (Goldhirsch et. al.,1987) that for finite large time, the
value of µn approaches to the value of the Lyapunov exponent.

Employing the above procedure to investigate the dynamic stability of
a nonlinearly elastic infinitely wide plate, eqn. (26) is obtained by reducing
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eqn. (25) to a set of first order differential equations. The matrix G in the
stability equations (27) can thus be written as follows

(29)

Note that the matrix G is a function of the instantaneous stiffnesses which
depend on the current state of stress. The latter is the solution of eqn. (25)
which (when reduced to a set of first order equations) is the relevant special
case of eqn. (26). Hence eqns. (25), have to be solved simultaneously with
the progressing of the stability analysis. Within a time interval t (l ) < t <
t (l +1) , the numerical integration of eqns. (25), with the initial conditions

(30)

yields the displacement field at t ( l +1) . On the basis of this, the stress field
and the elements of the instantaneous stiffness tensor at every point of the
plate can be re-evaluated. The coefficients of the stability equations Gi j are
updated accordingly, and the stability analysis is carried on.

Application of this methodology has been recently carried out by Gilat
and Aboudi (2000b) where the parametric stability of nonlinearly elastic
cross-ply plate has been investigate. It was shown that nonlinear effects due
to the material behavior increase the stability of the the nonlinear plate as
compared to the corresponding linearly elastic one.

4. Dynamic buckling of nonlinearly elastic composite cylindrical
shell

In the present section the effect of the material nonlinearity on the dynamic
buckling of cylindrical shells due to the application of a non-periodic time-
dependent axial loading is investigated. To this end, the concept of dynamic
buckling of Budiansky (1967) is adopted.

4.1. BASIC FORMULATION - AXISYMMETRIC RESPONSE

Consider a cylindrical shell of length L radius R , wall thickness h , with
x and y being respectively the axial and circumferential coordinates, and
the z coordinate is directed inward along the radial direction and its ori-
gin is located in the midsurface of the shell. For thin shallow cylindrical
shells the theory of Donnell is utilized (Vinson, 1989). Due to the material
nonlinearity, the previously described incremental formulation is adopted
for the establishments of the material behavior by means of instantaneous
stiffnesses as well as for the structural analysis. For a state of axisymmetric
response of the shell, the incremental form of the von Karman strains have
the following form (Gilat and Aboudi, 1995a)
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(31)

where u0
x (x , t), u 0

y (x , t) and u 0
z (x, t ) denote the displacements of the mid-

surface in the x , y and z directions respectively.
The equations based on Donnell’s shell theory, which govern the ax-

isymmetric motion of an anisotropic cylindrical shell subjected to time de-
pendent axial load (within the time increment t (l ) ≤ t ≤ t (l + 1)), can be
presented in the following incremental form

(32)

These governing equations are accompanied by initial and boundary con-
ditions. The substitution of the stress and moment resultants definition
in conjunction with the strain-displacement relations eqn. (31), and the
constitutive law (18) into the governing equations (32) yields a system of
nonlinear partial differential equations in terms of the incremental displace-
ment variables, ∆ u0

i , i = x, y , z. These equations are solved successively
for each of the small time increments ∆ t = t ( l+ 1 ) – t (1) , l = 0, 1, . . . l max
by employing a spatial finite difference and temporal Runge-Kutta integra-
tion. The coefficients of the differential equations, which due to the material
behavior are not constants, are assumed to remain unaltered within each
time increment but are updated at its end.

4.2. DYNAMIC BUCKLING

The definition of the limit of stability for structures which are subjected to
nonperiodic time-dependent loads requires the examination of the ability of
the system to preserve a certain property under perturbation of a specific
type (Bellman, 1953). In order to do this, the approach of Budiansky (1967)
is adopted according to which the dynamic buckling is associated with the
state at which small changes in the magnitude of loading lead to large
changes in the structure response. To this end, the response of the structure
to loads of various magnitudes is studied. Since the response depends both
on time and space, it is necessary to characterize this response by a specific
value. Buckling curves can then be constructed which exhibit the variation
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of the response characteristic with the loading magnitude. This criteria for
instability has been widely used. Yet, it should be noted that this criterion
for dynamic buckling is not necessarily unequivocal. As long as the slope of
the buckling curve exhibits an abrupt change, from almost zero to almost
infinity, the dynamic buckling load can be easily defined. But as the slope
changes more gradually, the application of the Budiansky criterion becomes
more ambiguous. It must be supported by an arbitrary definition of the
critical slope, or according to Simitses (1990), by a definition of an allowed
displacement.

Dynamic pulse buckling loads of nonlinearly elastic composite shells
have been presented by Gilat and Aboudi (1995a). The influence of various
parameters that control the applied load behavior and the geometry and
materials of the composite shell have been investigated.

5. Thermally induced dynamic buckling of metal matrix com-
posite plates

In this section the dynamic buckling of metal matrix composite plates in-
duced by a rapid heating is analyzed. Here the temperature field is fully
decoupled from the mechanical field and is solely governed by the transient
heat equation. Due to the existence of the metallic phase, inelastic behavior
occurs that must be incorporated into the analysis.

5.1. BASIC FORMULATION - CYLINDRICAL BENDING

Consider a laminated metal matrix composite rectangular plate of an infi-
nite width in the y direction, uniformly supported along the edges x = 0, L ,
and exposed to a rapid surface heating. The thickness of the plate is h and
the coordinate z is perpendicular to the plane of the plate with its zero
placed in the mid-plane.

If the effect of the mechanical field on the temperature filed is neglected,
the temperature T is governed by the heat conduction equation which can
be solved independently of the mechanical problem.

In the framework of the classical plate theory, the von-Karman kine-
matic relations for the cylindrical bending state are

(33)

and uz 0 is the initial geometrical imperfection which is associated with the
initial stress-free state.
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The plate is made of layers consisting of unidirectional elastic anisotropic
fibers embedded in an inelastic metallic matrix. The thermo-elastic fiber be-
havior is governed by the generalized Hooke’s law, while the behavior of
the thermo-elastic-viscoplastic matrix material is governed by the Bodner-
Partom (1975) unified theory. The effective mechanical and thermal prop-
erties of the composite as well as its overall inelastic strains are determined
by employing the method of cells.

Neglecting the inplane inertia, the equations which govern the motion
of the plate are

(34)
These equations are associated with initial conditions which specify the
initial displacements and velocities, and boundary conditions defining the
displacements and moments at the plate’s edges.

Integration of the first two of equations (34) in conjunction with the the
stress-strain relations, the stress resultants definition for a state of plane
stress, and the strain-displacement relation (33), results in

(35)
where c0 (t ), c1 ( t) are integration functions and N I

i j , N T are inelastic andi j
thermal stress resultants, respectively.

Let the temperature field be symmetric about x = L /2. Furthermore,
it is assumed that the variation of the stiffnesses with respect x , due to
the temperature dependence of the material properties, is negligible. The
solution of (35) for ε 0

x x and ε 0
xy leads to

(36)

c2 (x,t), c3(t), c4(x,t) and c5(t) depend on the plate stiffnesses, the inelastic
and thermal stress resultants, and c0 , c1 . Eqns. (36) in conjunction with
strain-displacement relations (33) yield the inplane displacements of the
midplane

(37)

By imposing the boundary conditions of immovable edges, the following
expressions for c0  and c1 are obtained
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displacement, u0
z , only.

Thus, the stress and moment resultants can be expressed in terms of the
plate stiffnesses, the inelastic and thermal stress resultants and the un-
known transverse displacement, such that the third of the equations of mo-
tion (34) becomes a partial differential equation in term of the transverse

Let the initial imperfection and the transverse displacement, which is
expected to be symmetric with respect to x = L /2, be expressed by the
following series

(38)

where is defined such that
the boundary condition is satisfied.  When symmetry
(with respect to z) of the layup and the temperature field exists, ( t ) = 0.

Application the Galerkin method with respect to the spatial coordinate
x reduces the third equation (34) to the following set of nonlinear ordinary
differential equations

(39)

where are functions of the plate stiffnesses, the inelastic and

thermal resultants, the amplitudes of the initial deflection, and .
The solution of eqns. (39), namely W k (t ), k = 1, ... J is obtained by

using the Runge-Kutta integration scheme. This is done in conjunction
with incrementally following both the development of plasticity and the
change of the material properties due to the variation of the temperature
field. At the end of each time increment, at all points of the structure, the
micromechanical analysis is employed to obtain the plastic strains, plastic
strain rates and the current stiffness matrix. The coefficients of eqn. (39)
and their time derivatives are then evaluated. Assuming that the deriva-
tives remain constant within the following time increment, eqns. (39) are
integrated to obtain the amplitude of the transverse displacement Wk at

the end of the current time increment. It should be noted that is also
assumed to remain constant during each time increment such that the term

including on the right hand side of eqns. (39), vanishes.
Results that exhibit the thermally induced dynamic buckling behavior

of metal matrix composite plates have been presented by Gilat and Aboudi
(1995b).
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6. Fully coupled thermomechanical dynamic buckling of metal
matrix composite plates

In this section we consider the dynamic buckling of metal matrix compos-
ite plates under circumstances of elevated temperature and high rate of
loading. Here the mutual influence between the induced mechanical and
thermal fields are significant. In such cases, the full thermomechanical cou-
pling exists and must be taken into account.

6.1. BASIC FORMULATION - CYLINDRICAL BENDING

Consider an infinitely wide metal matrix composite plate. In the frame-
work of the high order shear deformation theory of Reddy (1984), the von-
Karman strain-displacement relations for the cylindrical bending state in an
infinitely wide plate (described in the previous section) have the following
form

(40)

Here denote the displacements of a point on the mid-plane,
are the rotations of normals to the mid-plane and uz 0 is the

initial geometrical imperfection associated with the initial stress-free state.
Using the definitions of stress and moment resultants in conjunction with
the effective constitutive relations for the thermo-visco-plastic composite
with σ z z = 0, the following plate constitutive relations are established (Gi-
lat and Aboudi, 1996)

where N I , M I , R I , P I and N T , M T , R T , P T are the corresponding
inelastic and thermal resultants.

(41)
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The plate equations of motion which govern the behavior of the plate
under a state of cylindrical bending, are

(42)

The coupled energy equation for anisotropic thermo-inelastic media is
(Allen, 1991)

(43)
where η is a positive scalar not greater than 1 (usually around 0.9, see
Hunter (1983) for example) representing the part of inelastic energy loss
which is transformed into heat.

Following McQuillen and Brull (1970), the Galerkin method is used in
order to derive the plate energy equations from the 3-D energy equation
(43). For a state of cylindrical bending, the deviation from the initial tem-
perature T R is assumed to have the following z dependent form

(44)

where the unknown functions T0( x , t) and T1(x, t ) are the temperature at
the midsurface and the constant part of the temperature gradient in the z
direction. The functions  τ i ( x , t ), i = 1, ...4 are defined such the boundary
conditions, specifying either the temperature or the heat flux over the upper
and lower surfaces of the plate, are satisfied.

The expression (44) is substitute into equation (43) and the error is
required to be orthogonal to the weighting functions (1 + τ 2z 2) and (z +
τ4z 3) within the interval These weighting functions, unlike
those used by McQuillen and Brull, ensure the derivation of variationally
consistent plate energy equations, having the following form

(45)

Here G i j and S i , i, j = 1, 2 are defined in terms of the the thermal and
mechanical fields, the thermal and mechanical material properties and the
inelastic strains.
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The mechanical equations of motion (42) and the two energy equations
(45) which govern the displacements and the
unknown temperature variables Ti , i = 0, 1, are associated with initial and
boundary conditions for both the thermal and the mechanical fields.

Dynamic buckling behavior of metal matrix composite plates under
combined thermomechanical loading has been presented by Gilat and Aboudi
(1996). Th effects of coupling due to mechanical energy generation with
both its reversible and irreversible parts has been studied.
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In troduc t ion

The optimal control of flexible structures is an active area of research.
The main body of work in this area is concerned with the control of
time-dependent displacements and stresses, and assumes linear elastic
conditions, namely linear elastic material behavior and small deforma-
tion. See, e.g., [1]–[3], the collections of papers [4, 5], and references
therein.

On the other hand, in the present paper we consider the static optimal
control of a structure made of a nonlinear elastic material and under-
going large deformation. An important application is the suppression
of static or quasi-static elastic deformation in flexible space structures
such as parts of satellites by the use of control loads [6]. Solar radia-
tion and radiation from other sources induce a temperature field in the
structure, which in turn generates an elastic displacement field. The
displacements must usually satisfy certain limitations dictated by the
allowed working conditions of various orientation-sensitive instruments
and antennas in the space vehicle. For example, a parabolic reflector
may cease to be effective when undergoing large deflection. The elastic
deformation can be reduced by use of control loads, which may be imple-
mented via mechanically-based actuators or more modern piezoelectric
devices. When the structure under consideration is made of a rubber-
like material and is undergoing large deformation, nonlinear material
and geometric effects must be taken into account in the analysis.

Finite Element (FE) methods for elliptic optimal control of structures
in a variational setting have been considered in [7] for plastic deforma-
tion problems in metal forming, in [8] for the von Karman elastic plate
equations, in [9] for viscoelasticity, and in [10] for a cracked linear elas-
tic structure. Most of the numerical methods employed in these optimal
control formulations involve the “adjoint state,” which appears when
the Pontryagin maximum principle is employed [11]. The problem’s
variables include, in addition to the primary state variables, the adjoint
variables. This leads to a mixed FE formulation involving a linear al-
gebraic system of dimension 2N u , where N u is the number of primary
degrees of freedom.

Recently, a new general framework has been developed by Givoli for
the FE solution of optimal control problems governed by nonlinear el-
liptic partial differential equations [12]. In contrast to the FE schemes
mentioned above, the approach in [12] is a direct one, which does not in-
volve adjoint variables. Computationally, this has the effect of leading to
a simpler formulation and reducing the number of variables by a factor
of two. The solution of the final discrete minimization problem is per-
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formed via Sequential Quadratic Programming (SQP). This formulation
does not employ the standard tools of classical control theory, but fits
naturally into the framework of computational continuum mechanics.

In this paper we apply the direct optimal control methodology to
the problem of reducing the large in-plane static deformation of a thin
hyperelastic plate using control loads. First we develop the general FE-
SQP formulation associated with the problem, including the constrained
and unconstrained cases, and then we present some results for a specific
example.

1. THE OPTIMAL-CONTROL
HYPERELASTIC PROBLEM

1.1 CONSTITUTIVE MODEL

We consider a thin deformable plate in a plane-stress state. We fix
a reference cartesian coordinate system X = ( X 3), where X1 , X 2 , X 3 i s
in the plate’s thickness direction. Let x = (x1 , x 2 , x 3) be the position
vector in the current configuration. Since the deformation of the plate
is assumed to be planar, only x 21 and x are of interest. Let F be the
three-dimensional deformation tensor, i.e., F = ∂ x / ∂ X, and let

(1)

Here J is the Jacobian associated with the three-dimensional deforma-
tion (which is also the volume ratio in the current and initial configu-
rations, J = d v/dV ), and the λi are the principal stretches. The latter
are the eigenvalues of the tensor F, or more precisely,

(2)

Here, the N i and n i are, respectively, the eigenvectors of the right
Cauchy-Green tensor (in the reference configuration) and the eigenvec-
tors of the left Cauchy-Green tensor (in the current configuration).

Now, we consider a stretch-based hyperelastic material whose stored
elastic potential is (see, e.g., [13]):

(3)

Here λ and µ are given Lamé coefficients. This elastic potential leads to
the Cauchy stress tensor σσ , which can be expressed in principal direc-
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tions m i as

(4)

Here the σi and the m i are the eigenvalues and eigenvectors of the tensor
σσ . The principal Cauchy stresses are obtained from the elastic potential
ψ via

(5)

Here and elsewhere we do not enforce the summation rule on repeated
indices. In particular, we obtain from (5) and (3):

(6)

Eq. (5) and thus (6) hold in the general case. In the plane-stress case
we have σ3 = 0. We also define the Jacobian j associated with the two-
dimensional deformation in the (X 1, X 2) plane (which is also the area
ratio in the current and initial configurations, j = da/d A), i.e.,

(7)

By using these facts in (6) we get

(8)

We substitute this into (3) and, after some algebra, obtain a plane-stress
form for ψ analogous to (3), i.e.,

Here, is the effective plane-stress Lamé coefficient defined by

(9)

(10)

Also, from (7), (8) and (10) it is easy to show that in J = γ In j, namely,

J = j γ . (11)
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To obtain an expression for the principal stress, we first differentiate
ψ given by (9) with respect to the stretches, and obtain (for α = 1, 2)

(12)

Then from (5) and (12) we finally get

(13)

This is the stress-stretch relation in the principal directions. To obtain
Cauchy stresses in other directions one may use the stress transformation
formula

(14)

Here the n α are the principal stress directions in the current configura-
tion, and e k is the unit vector in the x k direction.

1 2. STATEMENT OF THE
OPTIMAL-CONTROL PROBLEM

The statement of the problem consists of four ingredients: (1) gov-
erning equations, (2) boundary conditions, (3) objective functional, and
(4) constraints on control.

1.2.1 Governing Equations. L e t Ω be the finite spatial domain
representing the plate, and let Γ be its boundary. Let U ( X ) be the
unknown displacement field with respect to the reference configuration.
The governing equations in Ω are

(15)

(16)

(17)

(18)

Here ƒ is the (two-dimensional) body-force vector, and I is the unit
second-order tensor. All the other variables have been defined in the
previous section. Eqs. (15)–(18) are, respectively, the equation of equilib-
rium, the hyperelastic constitutive equation (see (13)), the definitions of
principal Cauchy stresses and stretches, and the kinematic (deformation-
displacement) relation.
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If the stresses and stretches are eliminated from these equations, one
is led to a system of nonlinear equilibrium equations in terms of the
displacements Uα, which may be written abstractly in the form

N U + ƒ = 0 in Ω . (19)

Here N is a nonlinear elliptic differential operator.

1.2.2 Boundary Conditions. To fix ideas, we suppose that the
plate is clamped on part of its boundary, Γ1 , and is initially free on the
rest of its boundary, Γ2 . Our goal is to reduce the size of the displacement
U ( X ) of the plate generated by the body force ƒ. To this end, we apply
control load s along the part of the boundary Γ c ⊂ Γ2. The rest of
Γ 2, denoted Γ ƒ ≡ Γ 2 – Γc , remains traction-free. Thus, the boundary
conditions are

(20)

(21)

(22)

The subdivision Γ = Γ1 + Γc + Γ ƒ is assumed to be given a-priori. Note
that the control load function S( x ), for x ∈ Γc , is a primal unknown
in the problem, accompanying the other unknown function U ( X ), for
X ∈ Ω.

1.2.3 Objective Functional. The requirement for minimal dis-
placement U is enforced in the least-squares sense. Thus, we define the
quadratic functional:

(23)

Other objective functions may be defined too [12], but here we concen-
trate on the L 2-norm (23).

1.2.4 Constraints on Control. We define bounds which limit
the size of the components of the control load s, i.e., sα ≤ zα, or more
generally,

ts ≤ z , (24)

where t is a transformation matrix, z is a given constant bound vector,
and the vector inequality is to be interpreted entry-wise. We remark
that restricting the control load to have a prescribed direction can be
viewed as a special case of the constraint (24).
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One may be interested also in the unconstrained case, which simplifies
the formulation. We shall relate to this case later when considering the
numerical optimal control scheme.

1.2.5 Statement of the Problem. The problem to be solved is:
Find U ( X ), X ∈ Ω and s ( x), x ∈ Γc , which satisfy the nonlinear
equation (19), the boundary conditions (20)–(22), and the constraint
(24), such that C[U ] given by (23) is minimized.

2. COMPUTATIONAL SCHEME

2.1 FINITE ELEMENT DISCRETIZATION

The Galerkin Finite Element (FE) method is applied to the problem
under consideration. Both U and s are approximated via FE shape
function expansions, i.e.,

(25)

(26)

Here E u and E s are the set of displacement nodes and control nodes, ΨI

and φ A are the displacement and control shape functions, and dI and S A

are the displacement and control nodal values, respectively. The global
vectors whose entries are all the nodal displacements and all control
loads are denoted d and S , respectively. We denote the total number of
displacement degrees of freedom by N u , and the total number of control
degrees of freedom by N s.

Applying the approximations in (25) and (26) to the variational (or
weak) form of (19)–(22) results in a system of nonlinear algebraic equa-
tions, of the form (see [12])

(27)

Here G0 is the vector of internal forces (which is a nonlinear function
of the displacements d ), and F is the background load vector, both
standard in nonlinear FE analysis. The term QS is the control load
contribution to the equilibrium equations. Note that both d and S are
unknown. The matrix Q in (27) has the form

(28)
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Here, the δα β is the Kronecker delta. Also, in (28) and elsewhere, we
have represented the degree of freedom I by the pair (P, α), where P is
the nodal point and α is the direction corresponding to I. Likewise, the
control degree of freedom B is represented by the pair (Y , β ).

The approximation of (23) using (25) leads to the discrete objective
function,

C h[d] = d T M d (29)

where

(30)

In (29), the superscript T denotes transposition.
The discrete counterpart of the constraint (24) is

T S ≤ Z , (31)

where T is a given constant transformation matrix, and Z is a given
constant bound vector.

Now the discrete optimal control problem can be posed as follows:
Find d and S which satisfy the nonlinear system (27) and the constraint
(31), such that C h given by (29) is minimized.

2.2 S E Q U E N T I A LQUADRATIC
PROGRAMMING

The Newton iteration procedure is now applied to the nonlinear sys-
tem (27). We denote the vector d at iteration i by d (i ) . At iteration
i + 1 the solution vector is updated via

(32)

The increment ∆∆ d (i) is found by solving the linear system of equations,

(33)

Here K (i) is the tangent stiffness matrix,

(34)

and R (i) is the residual vector obtained from (27),

R (i) = F – G 0 (d(i)) + Q S . (35)
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Eqs. (32), (33) and (35) can be written as

where

(36)

(37)

The vector as defined by (37) is the current solution with no control.
Now we substitute (36) into (29), and after some algebra obtain,

(38)

(39)

(40)

(41)

where

From (38) and (31) we then obtain the Quadratic Programming (QP)
problem:

Given d (i), f i n d min [ S T P (i) S – 2S T B (i)] .
T S≤ Z

(42)

The QP problem (42) is solved using a standard QP algorithm. In
the numerical of the next section, we shall use the Goldfarb-Idnani QP
algorithm [l4] for this purpose.

To summarize, the proposed method reduces the original optimal con-
trol problem into a sequence of QP problems, one in each Newton it-
eration. These problems are in turn solved by applying a standard QP
algorithm. See [12, 15] for a detailed discussion on the computational
aspects of this scheme.

2.3 COMPUTATIONAL ASPECTS

We now make a few remarks regarding the computational aspects of
this formulation.

2.3.1 Remark 1. Equations (37) and (40) involve the inverse of
the tangent stiffness matrix K (i ). In practice, the inverse is never ac-
tually computed, but K (i ) is factorized, and then back substitution is
performed to obtain K – 1 ( F  – G 0) in (37) and K – 1 Q in (40). The
latter involves back substitution for each column of the “right hand side
vector” Q.
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2.3.2 Remark 2. The matrix P ( i) appearing in the quadratic
form in (42) is symmetric and positive semidefinite. Symmetry follows
from (39) and from the symmetry of M defined in (30). Positivity is
obtained from the simple calculation

The first equality in (43) follows from (39), and the last inequality follows
from the positivity of M, which can easily be shown. Strict positive-
definiteness of P( i) is not obtained in general. QP algorithms for the
problem (42) with a symmetric positive semidefinite matrix P are widely
known [16, 17].

2.3.3 Remark 3. The matrix P and the operations in (39)–(41)
are global in nature. This may have an undesirable effect on the com-
putational effort needed in forming P and in the actual solution of the
problem (42). However, this becomes a difficulty only when N s (i.e., the
dimension of the discrete control space) is large. Typically, Ns is much
smaller than N u . In other words, the total number of nodal control
variables is much smaller than the total number of u degrees of freedom.
Thus, the computational effort associated with the matrix P in (39) is
not necessarily large, even when the discrete problem at hand is large.

2.3.4 Remark 4. It is important to note that operations with
the N u -dimensional arrays are local in nature, and can be performed
on the element level. The matrices and vectors Q, M, G 0

(i) , F a n d
K (i), calculated in the proposed scheme, are formed in practice by the
assembly of analogous element-level matrices and vectors, as usual in
finite element analysis. The calculation of M in (41) is also performed
on the element level.

2.3.5 Remark 5. The QP problem (42) is solved in each Newton
iteration by using a QP algorithm. All QP algorithms are iterative, and
include some stopping criteria [16, 17]. Since only the QP step in the
last Newton iteration yields the final optimal control, it is reasonable to
modify the QP stopping criterion tolerance during the Newton process,
so that it becomes tighter towards the end of this process. This would
guarantee that the computational effort associated with the QP step
is not too large when the solution d(i) is not sufficiently close to the
converged solution.

2.3.6 Remark 6. The shape functions are standard C 0 fi-

(43)

nite element functions, e.g., linear on triangular elements or bilinear on



www.manaraa.com

161

quadrilateral elements. On the other hand, the control shape functions
φ A need not be so regular. In the formulation above they appear only in
the definition of the matrix Q (see (28)), and thus they are allowed to
be piecewise-continuous. For example, one may use piecewise-constant
φ A ’s, where A indicates the midpoint of element A. This enables one
to represent, for example, a spatial “bang-bang control” as the approxi-
mate solution. In fact, the φA may even be Dirac delta functions, since
the integral in (28) exists in this case. Then represents
“concentrated forces” with intensities UA acting at the control nodal
points.

2.3.7 Remark 7. If the governing equations are those of linear
elasticity, i.e., the material behaves linearly and the deformation is small,
then there is no need in Newton iterations, and the formulation above
reduces to a single QP problem of the form (42). All the expressions
given previously are valid, except that the superscript (i ) is omitted
everywhere, K is a constant stiffness matrix, and in (37) is simply

= K – 1 F , i.e., the solution with no control.

2.4 THE UNCONSTRAINED CASE

Now we consider the case where there are no constraints except those
related to the required regularity of the control functions. (Regarding
the latter requirement, see [12].) In this case, the controls may be “con-
strained” through penalty terms in the objective functional. Thus, we
replace the objective functional C[U ] in (23) by

(44)

Here W(x) ≥  0 is a given weight function.
The continuous-level optimal control problem is now:

Find U ( X ), X ∈ Ω and s (x ), x ∈ Γc , which satisfy the nonlinear
equation (19), and the boundary conditions (20)–(22), such that C[U ]
given by (44) is minimized.

We introduce the FE approximations (25) and (26), and obtain, after
some algebra, the following algebraic minimization problem analogous
to (42):

Given d (i ) , f i n d m i n [ S T P (i ) S – 2S T B (i) + S T N S] , (45)

where

N = [N A B] (N s × N s ) , (46)
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1,..., N s, where h is the expression in brackets in (45). Hence (45)
A necessary condition for a minimum is that for A =

yields the N s-dimensional linear system of equations,

(47)

This linear system has to be solved anew in each Newton iteration.

3. NUMERICAL RESULTS

We consider a square hyperelastic plate occupying the domain Ω  =
[0, 10] × [0, 10] and with thickness 0.1. The right side of the plate (x 1 =
10, 0 ≤ x2 ≤ 10) is free, and its other three sides are clamped. The
material parameters (see (3)) are λ = 100 and µ = 100. The plate is
loaded with the background body force f = (1,0) T .

Control loads are applied in order to minimize the the in-plane defor-
mation of the plate, in accordance with the problem stated previously.
We consider four control-load cases:

(a ) A single concentrated control load is applied
at x 0 = (10, 5) T , with no constraints;

( b ) Two concentrated control loads and
are applied at x 1 = (10, 3)T and x 2 = (10, 7)T ,

respectively, with no constraints;

(c) Three concentrated control loads
and are applied at

x 0 = (10, 5) T, x 1 = (10, 3)T and x 2 = (10, 7)T , respectively, with
no constraints;

( d ) Like (c), but with the constraint ⏐si⏐ ≤ smax = 13.

Thus there are between one and three control degrees of freedom, as the
case may be. The δ(x – x 0) appearing above is the Dirac delta.

We employ our modified version of the hyperelasticity finite element
code FLAGSHYP [13] to solve this optimal control problem. A finite
element mesh of 10 × 10 = 100 square bilinear elements is used. In
the Newton iteration process we use a convergence tolerance of 10– 4 ,
and incremental loading with 10 loading steps. For the solution of the
QP problem in each Newton iteration we use the Goldfarb-Idnani algo-
rithm [14].

Without control, the background load causes the deformation illus-
trated in Fig. 1.1.
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Figure 1.1 Deformation generated by the background load without control.

Now we add control loads, to reduce this deformation. Figs. 1.2(a)–(d)
show the deformed meshes in cases (a)–(d), respectively. It is clear that
the control loads cause a large local deformation (indeed not well resolved
by the coarse mesh used), but significantly reduces the deformation away
from the right boundary.

Table 1.1 gives the values of the optimal control loads s0, s 1 and s2 ,
and the corresponding values of the objective function Ch in cases (a)–
(d) as well as in the uncontrolled case. The arrangement of the optimal
control loading in cases (b)–(d) is symmetric as expected. The uncon-
trolled value of C h decreases significantly when control is introduced in
case (a), with only a slight further reduction in cases (b) and (c). In
case (c), the upper and lower loads are seemingly more effective than
the middle one in reducing the global deformation. Also, it is apparent
that the constraint si ≤ smax in case (d) hardly affects the optimal value
of C h and the deformation (cf. Figs. 1.2(c)–(d)), although it limits the
values of s1 and s 3 to the allowed maximum.

Table 1.1 Results obtained for the optimal control loads and the objective function
value.

Case s0 s1 s2 C h

Uncontrolled — — — 35.7
(a) 29.77 — — 5.97
(b) — 20.43 20.43 4.11
(c) 9.87 14.19 14.19 3.53
(d) 11.45 13.00 13.00 3.55
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(a) (b)

(c) (d)

Figure 1.2 Deformation generated by the combined action of the background and
optimal control loads in cases (a)–(d).

4. SUMMARY

We have presented a numerical scheme for the static optimal control
of the in-plane deformation of a flexible plate. The governing equations
are nonlinear due to the nonlinear behavior of the plate material and due
to the large deformation involved. A stretch-based hyperelastic material
model has been employed.

The numerical method used has been developed in [12] in a theoretical
setting. It has been demonstrated that the Sequential Quadratic Pro-
gramming (SQP) approach for static (elliptic) optimal control problems
of flexible structures is indeed effective. The method has the advantage
that it does not make use of adjoint variables and thus leads to a simpler
formulation with a reduced number of unknown variables. Other details,
examples, extensions and computational issues are discussed in [12, 15].
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COMPUTER SIMULATION OF NONISOTHERMAL ELASTOPLASTIC
SHELL RESPONSES
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I. Lu a 5, 10000 Zagreb, Croatia
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Abstract. Shell structures are extremly efficient, thin walled load-carrying components,
in the elastic as well as in the inelastic regime. Realistic and efficient computational
strategies lately are in rapid development. Such computational strategy for modelling of
nonisothermal, highly nonlinear hardening responses in elastoplastic shell analysis has
been proposed in this article. Therein, the closest point projection algorithm employing
the Reissner-Mindlin type kinematic model, completely formulated in tensor notation, is
applied. A consistent elastoplastic tangent modulus ensures high convergence rates in
the global iteration approach. The integration algorithm has been implemented into a
layered assumed strain isoparametric finite shell element, which is capable of
geometrical nonlinearities including finite rotations. Under the assumption of an
adiabatic process, the increase of the temperature is analysed during elastoplastic
deformation. Finally, numerical examples illustrate robustness and efficiency of the
proposed algorithms.

1. Introduction

Thin-walled shell structures and structural components play an important role in modern
technical applications. Recently, inelastic phenomena and their numerical simulations
have gained an increasing attention in shell research, e.g. in industrial crash-worthiness
problems. For such applications the temperature change during plastic flux plays a
significant role for mapping reality in sufficient quality.

Especially for shell-like metal structures, numerically efficient computational
strategies for elastoplastic deformation processes have received much attention during
recent years. Accurate modelling of the nonlinear hardening responses represents the
key for realistic material modelling. Employing thermomechanical coupling in the
model can significantly contribute to the accuracy of the numerical simulation. The
influence of the temperature on the material behaviour is encompassed in the evolution

167

D. Durban et al. (eds.), Advances in the Mechanics of Plates and Shells, 167–180.
© 2001 Kluwer Academic Publishers. Printed in the Netherlands.



www.manaraa.com

168

laws for internal variables describing combined kinematic and isotropic hardening.
Hardening rules formulated by differential equations will be as usually applied [1], [5],
[10], [13]. The temperature effect may be embedded in the corresponding model
parameters. Numerical simulations up to now have been mainly performed for two
dimensional plane stress and plane strain problems [6-8]. An algorithm for modelling of
nonlinear hardening responses describing cyclic plasticity of shell structures is proposed
in [19].

The present paper is concerned with numerical modelling of nonisothermal
hardening responses in elastoplastic analyses of shell structures employing the Reissner-
Mindlin type kinematic model. The elastoplastic material model is taken from [10], in
which all coefficients of the hardening evolution laws are temperature dependent. Small
strain and an associative flow rule are assumed, and an adiabatic process is considered.
Temperature path history dependence is implicitly included in the formulation. The
employed material functions were obtained experimentally for mild steel in [20].
Further, the computational algorithm, entirely formulated in tensor notation, is based
completely on the multi-scale-simulation-strategy as proposed in [9]. Additionally, a
closest point projection scheme [18] is applied, and the consistent elastoplastic tangent
operator is used with great benefit.

The computational algorithm has been implemented into a four-noded
isoparametric, assumed strain layered finite shell element [3], which allows for
geometrically nonlinear analyses considering finite displacements and rotations.
Efficiency of the proposed algorithm will be demonstrated by several numerical
examples, which also display changes of temperature during elastoplastic deformation.
All computations have been performed within the finite element system FEMAS [4]
developed at the Institute for Statics and Dynamics, Ruhr-University Bochum.

2. Constitutive Law on Material Point Level

The presently applied elastoplastic material model employs an associative flow rule and
the evolution laws for hardening variables as proposed by Lehmann [10] with material
functions determined by experimental studies in [20]. The associative expression for the
plastic strain rate is written as

(1)

where F(σ i j, ρ i j ,a) represents the von Mises-type yield function. As usually, λ is the

plastic multiplier and σ i j denotes the stress tensor components. ρ i j and a are internal
variables describing kinematic and isotropic hardening, respectively. T denotes the
process temperature. The kinematic hardening is expressed by the following nonlinear
evolution equation [10]

(2)

with ς  and χ as given material functions. ρ' i j are the deviatoric parts of the back

stress tensor components ρ i j
. The material function χ is expressed in dependence on
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temperature dependent coefficients. The internal variable describing isotropic hardening

(9)

(10)

(13)

(7)

(5)

the process temperature T by a polynomial in [20], while the function ς may be

obtained by the relation

(3)
Herein A denotes the second invariant of the back stress deviator, and c1, c2, c3 are

is assumed in the form

(4)

where S i j  stands for the deviatoric components of the stress tensor. According to [20],
the following isotropic hardening model is adopted

in which b1, b2, b3 and b4 are again temperature-dependent coefficients. The von Mises-
type yield condition has the form

(6)
and the following consistency condition generally has to be fulfilled

The temperature changes during the elastoplastic deformation process is expressed by
the relation

in which ξ denotes the dissipation function, while cp and ρ abbreviate the specific

heat capacity and the mass density, respectively. The values cp and ρ depend on the

process temperature T, while ξ is assumed to be constant [20]. Introducing the relative

stress deviator

and further its second invariant

the yield criterion may be rewritten in the form

(11)
The components of the relative stress deviator are expressed in terms of relative stress
components by the relation

where µ i j
k l represents the transformation tensor

( 8 )

(12)
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(20)

Finally, the relative stress tensor components are defined as

(14)

In equation (13) δ i
k exhibits the Kronecker delta, while ak l and a i j are the covariant

and contravariant components of the metric tensor [2,12]. Analogously to (12), the
deviatoric components of the back stress tensor shall now be written as

(15)
According to (1) and after differentiation of the yield function, the plastic strain rate can
be broken down as follows

(16)
By means of equations (9)-(16), the isotropic hardening variable may be written in
terms of the second invariant of the relative stress deviator

(17)
and the expression for the back stress tensor components can be transformed into the
following relation

(18)
After comparison with (4), the temperature rate may be reformulated in terms of the
isotropic hardening variable as follows

(19)

3 . Re-Formulation for Reissner-Mindlin Shell Kinematics

3.1. INTEGRATION ALGORITHM

The constitutive relations for thermo-plasticity sketched out in the previous chapter hold

in each material point X i of the shell continuum. They shall now be transformed into

shell space θ α , θ 3 . For Reissner-Mindlin type shell kinematics, the stress and strain

measures are described by eight tensor components, σ∈R8 and γ∈ R8. ρ ∈ R8 portrays
the back stress tensor describing the kinematic hardening response, as well. In contrast
to the standard matrix notation, all deviatoric components of the stress and back stress
tensor, S  ∈R9 and ρ' ∈ R9, are included in the present formulation. In the following, the
rate of all measures is replaced by their incremental values.

According to (16), the plastic strain increment (upper index . . . p ) is expressed by
the in-plane and shear components separately as follows
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The transverse normal plastic strain component is computed from the

incompressibility condition = 0. We remind our readers, that in contrast to the Latin

indices which represent numbers 1, 2 and 3, the Greek indices take the values 1 and 2.
In order to explain the algorithmic steps of the future computations, starting with

equation (17), the isotropic hardening variable in the time interval will be

updated by the relation

(21)
By means of (17) and (19), the increase in temperature is described by the following
equation

(22)

Applying (18), the back stress tensor components at time i t may be written as

(23)

where i R is the auxiliary variable given by

(24)

with ik as the isotropic hardening function . To avoid computational

difficulties, one should note that the kinematic hardening function ς has already been

computed at the end of the previous time step at i -1t .
For integration of the constitutive relations, the closest point projection scheme [18]

is adopted in such a way, that the predictor phase is expressed as

(25)

with the following relations for the trial stress components:

(26)

In (26) the total strain increments and consist of elastic, plastic and thermal

parts. C αβδε is the elastic material tensor [11,12], while G denotes the shear modulus.
The total strain components are then decomposed in the form

(27)
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Herein the upper indices e (p ) denote elastic (plastic) strain parts, and represents

the thermal strain components

(28)

with αT as coefficient of thermal expansion, depending on temperature [20]. Employing

the usual additive decomposition (27) of the strain tensor, the stress components at the
end of the time step are computed correspondingly as

(29)

By means of (14) and of equations (20), (23), (25) and (29), the following expressions
for the relative stress tensor components are obtained

(30)

where the transformation tensor can be broken down in the form

(31)

After inserting (30) into the yield criterion (11), the nonlinear scalar equation is
obtained

(32)

which has to be solved for iλ . For this task, the Newton iteration method has been

applied. During the iteration process, the unknown auxiliary variable i R must be
computed, which is performed also numerically by means of the following nonlinear
equation obtained from equations (5), (21) and (11)

(33)

After determination of the plastic multiplier, the updated values of the stresses as
well as all internal variables can be calculated. To avoid spurious unloadings, all state
variables are updated with respect to the previous equilibrium state. During the
computational process, the loading/unloading criterion is expressed by the Kuhn-Tucker
condition [17]. In order to preserve numerical efficiency of the global iteration strategy,
the elastoplastic tangent modulus consistent with the integration algorithm has to be
derived and applied.

For a given value of λ  this equation is to be solved for the isotropic hardening variable
a in each iteration step by applying a local iteration scheme. After determining a, the

values of the variable i R and the temperature iT can be evaluated.
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3.2. CONSISTENT ELASTOPLASTIC TANGENT MODULUS

By differentiation of the updated relations presented in the previous section using the
consistency condition and after some tedious and suitable formulae manipulations, the
following relations between the differential stress and strain components are obtained

(34)
which deliver the desired tensor components of the consistent elastoplastic tangent
modulus:

Herein the following abbreviations have been introduced

(35)
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(36)

The appearing tensor components Lαβ , L α 3 , M αβ and M α3 are further expressed by
the relations

(37)

In the above given equations the left upper index i referring to all state variables at time
i t is omitted due to notational simplicity. It is not difficult to verify that the presented

tensor components C ijkl are unsymmetrical with respect to the couple of indices (ij)ep

and (k l). This fact has its origin in the assumed nonlinear kinematic hardening response.
For the evaluation of the stiffness matrix, the tangent operator has been symmetrized by
use of arithmetic mean values, as successfully applied in [19].

4. Computed Examples

The integration algorithm presented based on the consistent tangent modulus has been
implemented into the formulation of one of the assumed-strain layered finite elements
[3] within the finite element code FEMAS [4]. By use of this highly modular software
code, a series of numerical simulations, demonstrating the excellent performances of the
proposed algorithm, has been executed. Material nonlinearity therein is combined with
the modelling of geometrically nonlinear responses. For the tracing of the deformation
paths, Newton-Raphson and Riks-Wempner-Wessels iteration schemes, both enhanced
by a special line search procedure [14,15], are applied. The termination criterion of the
iterations is expressed in terms of the energy norm [18]. For the material model applied,
all material parameters, obtained experimentally for German mild steel St37.12, are
taken from [20]. The Young’s modulus of elasticity E and the Poisson’s ratio v at the

initial temperature of 25°C (298.15 K) have the values of E =212 GPa and v =0.285.

The initial yield stress is σY =240 MPa. All material parameters depend on the

temperature and they are changed during the deformation process. All computations
have been performed at the initial temperature, and the temperature changes have been
considered by assumption of adiabatic deformation processes.

4.1. CIRCULAR TUBE UNDER CYCLIC TORSION

A clamped circular tubular shell subjected to torsion is analysed as a first example. Its
geometry with the finite element mesh is presented in Figure 1. The complete cylinder
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has been discretized by 20x20 elements. The strain controlled cyclic loading is
modelled by the twisting moment MT at the right end of the tube producing a strain
amplitude of ±0.03. The simulated stress-strain diagram presenting four hysteresis
loops for the free end of the cylinder is shown in Figure 2. The temperature increases at
the end of each hysteresis are displayed in Table 1. As obvious, the total increase of the
temperature at the end of the computed cyclic loading process is 26.5 K. To asses the
convergence rate of the algorithm during the global iteration procedure, the numerical
values of the residual energy norm of the Newton-Raphson approach at load level at the
end of the first hysteresis loop are presented in Table 2. As may clearly be observed,
quadratic convergence is exhibited.

Figure 1. Geometry and finite element mesh for circular tube (dimensions in [mm])

Figure 2. Cyclic response of circular tube
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TABLE 1. Temperature increase during deformation process

Hysteresis loop 1 2 3 4

Increase of temperature [K] 8.8 7.3 6.2 4.2

TABLE 2. Convergence of global energy error
norms for circular tube under cyclic torsion

Iteration Energy error norms

1 2.2383D-03
2 1.2215D-06
3 1.0737D-09
4 5.3673D-12
5 9.5771D-15

4.2. AXIAL COMPRESSION OF A THIN CYLINDRICAL SHELL

As second example, a thin vertical cylinder is considered. This axially compressed
structural element may dissipate vast amounts of energy during its plastic deformation,
and it is thus a very competitive energy absorbing element for crash situations [16].
Around the top end, the cylinder is compressed by a uniform reference line load q0

corresponding to total equivalent force of 625 N. The shell is clamped along the bottom
end and only axial displacements are allowed on the upper shell boundary. Employing
symmetry, one quarter of the shell is discretized by 20x80 finite elements. The
geometry and the finite element mesh are shown in Figure 3, all dimensions therein are
given in [mm].

Figure 3. Geometry and finite element mesh for axially compressed cylindrical shell
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The load factor scaling the reference load versus the axial displacement on the upper
boundary is presented in Figure 4. The convergence of the global energy error norms of
the Riks-Wempner-Wessels iteration strategy for the load level at point B is displayed
in Table 3. As may be seen, a buckling problem occurs. The cylinder collapses at limit
point A where the shell buckling is initiated, as depicted in Figure 5 showing also the
plastic zones throughout the deformed shell thickness. After exceeding the limit point,
unloading is exhibited and the shortening of the shell occurs by plastic folding in an
axisymmetric buckling mode. The further deformed configuration at load factor of
38.924, noted by point B in Figure 4 and the spread of plastic zones are presented in
Figure 6. Evidently, a redistribution of plastic zones has been appeared. The initial
plastic regions are converted into elastic unloading zones.

By the elastoplastic buckling process, the temperature has been increased
considerably. The changes of the temperature along the outer shell generatrix for the
limit point and for the load level at point B are presented in Figure 7. The temperature
distributions are plotted on the undeformed shell configuration. The largest increase in
temperature is produced in the plastic folding regions undergoing large plastic
deformation.

Figure 4. Load- axial displacement curve for the top end of cylindrical shell

TABLE 3. Convergence of global energy
error norms for the load level at point B

Iteration Energy error norms

1 1.6052D-06
2 2.8537D-09
3 8.2349D-12
4 6.2238D-14
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Figure 5. Deformed configuration and spread of plastic zones throughout shell thickness at limit point

Figure 6. Deformed configuration and spread of plastic zones throughout shell thickness for the load level at
point B
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Figure 7. Temperature increase along outer shell generatrix at limit point and for the load level at point B

5 . Conclusions

An efficient numerical simulation technique for nonisothermal elastoplastic responses
of shell structures has been presented, employing a realistic material model for German
mild steel St37.12. Additionally, a highly nonlinear isotropic and kinematic hardening
model depending on temperature is incorporated. The yield condition is expressed in the
space of stress and temperature as well. The closest point projection algorithm for a
Reissner-Mindlin type kinematic model has been successfully employed in order to
have a highly efficient algorithm at disposal. The tensor formulation applied therein
allows all nine stress deviator components to explicitly include in the formulation,
which turns out to be an advantage over the classical matrix notation. Using consistent
linearization of the projection algorithm, the derived elastoplastic tangent modulus
ensures quadratic convergence in global solution procedures. Robustness and numerical
stability of the proposed algorithms are demonstrated by numerical examples. Assuming
adiabatic deformation processes, the increase in temperature is evaluated and monitored.
As expected, the largest temperature increase occurs in the regions undergoing gross
plastic deformation. An accurate and efficient modelling of nonisothermal hardening
responses of ductile metals can significantly contribute to the realistic description of the
crash behaviour of shell structural components and to the prediction of energy
absorption during collapse processes.
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Abstract. A new approach is developed for the analysis and calculation of straight
prismatic beams of piecewise constant cross-section under arbitrary loads. The
material can be anisotropic and composite; it is only supposed that the beam is
x-homogeneous, x being the abscissa. This theory can be called “exact” because it
determines exact static and kinematic generalized quantities. Contrary to classical
theories, it is not limited to high aspect ratio ( i.e. relatively slender beams). The
paper is focused on how to use the exact theory of elastic beam for computing
3D stresses. It is shown in particular how to compute the basic operators which
depend on the cross-section geometry, the material and the loading which are the
basic building blocks of the theory. An example is of an elastic tube with a small
thickness submitted to nearly concentrated extremity loads.

1. Introduction

Even within the confines of linearized elasticity, there are numerous works from
the last half-century that develop beam theories either by asymptotic techniques
(Ciarlet P.G., 1990) (Rigolot A., 1972) or by the introduction of a priori hy-
potheses (Ladevèze J., Ladevèze P., Mantion M., Pecastaings F., Pelle J.P., 1979).
The principle of Saint-Venant, in one way or another, plays a central role. Since
the work of Toupin (and those who have followed, see (Horgan C.O., 1989) and
(Horgan C.O., Simmonds J.G., 1994)), this principle has taken the status of a
theorem that specifies the conditions on the data assuring that the displacement
and stresses are localized in neighborhoods of the extremities.

The key question, it seems to us, is to divide the solution into:

– a long wavelength part;
– and a short wavelength, localized part.
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These effects must be separated during calculation. However, current theories
of beams are not based on such an underlying partition, but on approximations
valid for large aspect ratios.

This point of view has already been introduced and an answer given in the
case of Saint-Venant’s problem, that is to say, in the special situation where the
lateral surface of the beam is free and body forces are absent (Ladevèze P., 1983),
(Ladevèze P., 1985). It has been extended in (Ladevèze P., Simmonds J. G., 1996),
(Ladevèze P., Simmonds J. G., 1998) to arbitrary loads and to piecewise constant
cross-sections, that is, to most problems encountered in practice. The final result is
a general method for beam calculation named an “exact” theory of beams which,
contrary to the classical theories, is not limited to relatively slender beams. Its
domain of interest contains also composite beams, beams with rapidly varying
loads, connection between beam and 3D media.

The fundamental result is expressed in terms of s(x), the displacement-normal
stress pair defined on a cross-section of abscissa x by:

where s is the solution to the 3D reference elasticity problem and ss v the long
wavelength part of the solution that we always call the Saint-Venant solution.

s ± is a sort of Green function; t → s ± (x – t, t ) is a “local effect” density which
includes a regular part and Dirac distributions centered at the abscissa of different
discontinuities and, in particular, at the extremities.

A major property of a localized effect is that the associated generalized dis-
placement-stress pair vanishes. The generalized stress is formed from the resultant
and moment of the normal stress acting on the cross-section. We introduce the
notion of a generalized displacement starting from invariants along the abscissa; it
is constructed from a mean displacement and a mean rotation in the cross-section.

An important consequence is that the generalized displacement-stress pair of
the Saint-Venant solution and that of the solution to the reference 3D problem are
equal. The generalized displacement-stress pair can be calculated directly; it comes
from a solution to an “exact” theory of beams where the constitutive relation is
obtained after solving a series of 2D problems in the cross-section(s). This approach
represents a departure from current approaches in which the accuracy depends on
the aspect ratio of the beam. The localized effects are computed in a second pass
which requires the solution to some 3D problems defined on short portions of the
beam.

The paper is focused on how to use the exact theory of elastic beam. A first
step is concerned with the technique that we propose for the calculation of the
operators depending of the cross-section geometry, the material and the loading
which are the basic building blocks of the theory. In fact, we do not solve a series
of 2D problems on the cross-section but a 3D problem which can be handled
very easily with a standard finite element code. A second step is related to the
calculation of extremity effect corrections which are not necessarily truly localized
at the extremities, for example in the case of cylinders with small thickness. The
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paper ends with an example: the 3D analysis of an elastic tube with a small
thickness submitted to nearly concentrated extremity loads.

2. The 3D elasticity problem to be solved

Under the hypotheses (linear elasticity, small displacements, statics), one studies
the equilibrium of a straight prismatic beam of piecewise constant cross-section
under arbitrary loads (see Fig. 1).

The reference line is oriented by N = N 1 ; S x denotes the cross-section of the
x-abscissa. The domain occupied by the beam is then:

where L is the beam’s length.

Figure 1. Beam geometry

The beam environment is defined by a body force density fd on Ω and a surface
force density F d on the lateral surface ∑ l . Moreover, let us prescribe a displacement
U d on the cross-section S 0 and a surface force density H d on S L . Other usual
extremity conditions can be introduced without any additional difficulty. Here,
we work within the usual mathematical framework (Duvaut G., Lions J.L., 1976).
Let U and S be the finite energy spaces containing, respectively, the displacement
field U and the stress field . The 3D elasticity problem to be solved can then be
written:

Find such that the following conditions are statisfied:

– kinematic constraints:

equilibrium equations:

(1)

–

(2)

(3)

–
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– constitutive relation:

(4)

n is the unit normal to the boundary of the domain Ω. K is the Hooke’s tensor
and ∉ the strain operator. Regarding K, we suppose that the beam can be split
into subbeams such that the Hooke’s tensor is x-constant on each subbeam.

3.  The Exact Beam Theory (EBT)

The main results concerning the EBT are recalled here without giving the proofs
which can be found in (Ladevèze P., Simmonds J.G., 1996).

3.1. SPECIFIC BEAM NOTATIONS AND PRELIMINARY RESULTS

In the study of beams, it is helpful to introduce some specific notations, such as
the quantity s (x ) associated with the cross-section S x defined by:

The corresponding space is denoted S (S = [H1/ 2 ( S)]³ × [H – 1 / 2 ( S )]³); the space
of the associated fields defined on [0, L] is S[0, L] ·

3.1.1. Saint-Venant solution for the particular case of x-constant data
The main operators which are the basic building blocks of the EBT

are defined through the Saint-Venant solution for the particular case of x-constant
data. It is the exact 3D x -polynomial solution.

Theorem 1 The Saint-Venant solution for x-constant data (cross-section, loads,
K ) can be written:

(5)

where:
– are x-constant linear operators depending on the material and

the cross-section
– W d , C d are x-constant vectors depending on the material, the cross-section

and the load densities fd , F d , (W d (X), C d (X)) .
– and are respectively the generalized stress and the generalized

displacement. They depend only on x and will be specified later
and

– The generalized displacement and stress related to (W d , C d ) are zero.

3.1.2. Generalized displacement-stress
Here, we consider again the general case.
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will systematically denote an equilibrated generalized

(6)

)

(7)

Definition 1 The generalized displacement-stress associated with
is:

Moreover here,
stress, i.e. a solution to the beam equilibrium equations:

3.1.3. The basic localized effect (or solution) and the Saint-Venant principle
For the free infinite beam, one prescribes at x = 0 a discontinuity of both the
displacement and the normal stress vector which is denoted by s0 = (W 0 , C 0

(s0 ∈  S). The solution equilibrating the given perturbation (W 0 ,  C0 ) ,
formally defined by the following problem, extends what is called the “extremity
effect”: (see (Ladevèze P., 1983) (Ladevèze P., 1985))

Find s ± equal to s + on S ×]0, + ∞ [and to s– on S ×] – ∞ , 0[ such that:

(8)

This problem in fact describes the equilibrium of two connected semi-infinite
free beams, with the connection being defined by the relations in (7). The total
elastic energy is the sum of the energies of the two semi-infinite parts.

We are interested herein with finite energy solutions. Among the solutions to
problem (7) (8), we distinguish those which correspond to the following definition:

Definition 2 The solution s ± is localized in the neighborhood of x = 0 if:

— its energy is finite,

Theorem 2 The solution s ± produced by so = (W 0 , C 0 ) ∈ S is localized in the
neighborhood of x = 0 if and only if the generalized displacement-stress associated



www.manaraa.com

186

with s0 is zero i.e. if and only if:

(9)

Property 1 If the solution s± is localized in the neighborhood of x = 0, one has:

where ssv* denotes a Saint-Venant solution for no external loads and is
the following square brackets:

The localization property is more precisely defined by:

Property 2 The elastic energy of a solution s± which is localized in the neigh-
borhood of x = 0 satisfies:

where:

l is a constant length characterizing the cross-section geometry and the material.

Definition 3 The linear operator L characterizing a localized effect is defined by:

s ±(x,0) = –L(x-0)s0

L, which depends on the cross-section geometry and the material, is a sort of
Green’s function.

Remark
The Saint-Venant principle is in fact an orthogonality property of the family of
Saint-Venant solutions (Ladevèze P., 1983), (Ladevèze P., 1985).

3.1.4. The exact 1D-theory of elastic beams
The generalized displacement and the generalized stress are the solu-
tion of the following 1D-problem defined on [0, L]:

Find and x ∈ [0, L] such the following are satisfied:
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(10)

— some 1D extremity conditions at x = 0 and x = L

The operator and are determined in terms of the basic buildings
blocks  they will be specified later. The 1D extremity
conditions are derived from the 3D ones (see (Ladevèze P., Simmonds J.G., 1996)).

3.1.5. Fundamental result
Theorem 3 The solution to the reference 3D elastic problem can be written in an
unique way

where

– s sv is the Saint- Venant solution (5) associated with the x-values of the data
and of the generalized displacement and stress, solution of (10).

— x → s ± (x – t , t) is an effect which is localized in the neighborhood of x = t.
t → s± (x – t, t) consists of a regular part and Dirac distributions at the
extremities and at the load discontinuities.

Moreover, one has:

Property 3 The integral of the localized effects is equal to:

where :

– s+ (x) and s – (L – x) are effects localized in the neighborhood of extremities;
– L is a linear operator that depends on the cross-section and the material,
– hd (x) =
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Remark
The Saint-Venant solution does not exactly satisfy the various equations of the 3D
elasticity problem. Two residuals can be distinguished apart from the extremity
conditions:

— a residual associated with the non-satisfaction of the equilibrium equations:

— a residual associated with the non-satisfaction of the compatibility equations:

Another remarkable point is:

Property 4 The values of the generalized displacement and the generalized stress
for the Saint- Venant solution and the reference 3D elasticity solution are equal.

4. Calculation of the operators associated with the exact beam theory

A general computational technique is proposed to calculate the operators and
vectors:

These quantities depend on the cross-section geometry, the material and the
load densities The basic problem from which they are defined is the
determination of the Saint-Venant solution for the particular case of x-constant
data; it is an x-polynomial of degree 4.

4.1. CALCULATION OF 

One considers a piece of beam limited by two cross-sections x = 0 and x = L. It is
described with 3D finite elements of degree 4 in the x-direction, their length being
L. Therefore, the displacement is written:

where are the shape functions and ui the nodal displacement components.
The corresponding displacement subspace is denoted by Uh (classical additional
constraints on the displacement are added to get for one strain field only one
displacement field). The first equation is:

(11)
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(12)

One has also:

(13)

are matrices depending on the cross-section geometry and the material.
depends also on the load densities on S . The rigidity matrix   is positive

definite and symmetric.
There are several ways for solving the problem defined by the equations (12)

and (13). Our method consists in introducing as unknowns Lagrange multipliers
and related to the constraints (13), the quantities and being given.

Precisely, we solve numerically:

(14)

Let us note that the right side is given. Even if the matrix is not positive,
the resolution of (14) does not involve any numerical difficulty. The computed
values of and are very small; they can be used as error indicators.

The solution can be expressed as:

It is the Saint-Venant solution modulo a rigid body displacement. Consequently,
noting (5), we get:

To go further, let us recall a characteristic property of the generalized displace-
ment proved in (Ladevèze P., Simmonds J.G., 1996).

Property 5 The operators and the vector can be chosen such that s d =
satisfies the localization condition i.e.:

(15)
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with

Let us start with an additional rigid body displacement to the Saint-Venant
solution for zero-value load densities:

which depends on

is a constant operator to be determined from (16). One obtains:

(17)

It follows:

(18)

To determine , let us introduce one more additional rigid body displace-
ment to the Saint-Venant solution which depends on the load densities:

The localization condition (15) leads to:

(19)

It follows:

(20)

4.2. CALCULATION OF THE OPERATOR

First, from the computed displacement, one determines the generalized displace-
ment on ]0, L[:

(21)
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and one determines:

(22)

These quantities depend linearly on and the load densities. Therefore, they
can be written as:

From the exact beam constitutive relation:

(23)

(24)

where depends only on the cross-section geometry and the material, one gets:

(25)

4.3. EXAMPLE

The numerical technique for computing the basic operators associated with the
exact beam theory has been implemented in the f.e. code CASTEM 2000 for
arbitrary cross-section and composite material. For cylindrical tubes (radii a, b)
made with an isotropic material, the basic operators can be defined explicitely.
One gets:

with:

where f1  (y, z) and f2 (y, z) are:

For the constitutive relation, we get:
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where:

and one gets for k:

For the displacement:

the operator is:

and the operator is:

where:

and:

The exact 1D constitutive relation coincides with the one proposed recently in
(Renton J.D., 1997) but is different from (Cowper G.R., 1966).

Using the classical shell theory, approximations have been derived in (Ladevèze
P., Sanchez P., Simmonds J.G., 2000b) for thin elastic tubes of arbitrary cross-
section.

4.4. CALCULATION OF EXTREMITY EFFECT CORRECTIONS

4.4.1. Principle
One has to solve the problem giving the basic localized effect (or solution) which
is defined by equations (7) and (8). A finite element code can be used.
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However a difficulty can arise with cross-section of very thin tubes: the wave-
length of the localized effect can be very large compared to the cross-section diam-
eter and then such an effect contains a part which is not practically “localized”.

Let us consider a beam like elastic tube of arbitrary cross-section (thickness:
2l; diameter: 2R ). It is well known (McDevitt T.J., Simmonds J. G., 1999) that
the localized effect can be split in two parts:

– a part with a decay length,

– a part with a very long decay length,

To get the first part, one has to solve a 3D problem for which one can used a
finite element code. The splitting is done here by introducing an extension of the
Saint-Venant concept.

4.4.2. Calculation of extremity effect corrections with a very long decay length
A efficient way for computing such an effect is to use the set of functions introduced
in (Ladevèze P., 1983) which extends the Papkovitch one for the semi-infinite strip.
For the sake of simplicity, let us consider that the cross-section plane is a plane
of material symmetry. For an x-homogeneous beam [0, L], it has been proved in
(Ladevèze P., 1983) that the extremity effects can be written:

where are coefficients (complex numbers). and are two biorthogonal
sets of functions which satisfy:

for
where is the cross-section plane symmetry operator.

Introducing classical shell theory, one gets very easily the set by
solving a single 1D eigenvalue problem (Ladevèze P., Sanchez P., Simmonds J.G.,
2000b) (Ladevèze P., Sanchez P., Simmonds J.G., 2000a). Practically, one need
keep only the functions for which the decay length is larger than R; let be m the
corresponding index. One notes:

(26)

The corresponding displacement space is U m. For equilibrating the residues at the
extremities, two separate 3D problems located over the domains S × [0, R] and
S × [L   R, L ] have to be solved, the displacement being prescribed as 0 at the-
sections SR and SL – R. In other words, we suppose that the corrections associated
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with the two extremity residues have practically no interactions. The residue is in
fact:

with (27)

For defining the parameter of the Saint-Venant solution, i.e. the generalized
displacement and stress, one writes the Saint-Venant principle which is an or-
thogonality condition (Ladevèze P., 1985) (Ladevèze P., Simmonds J.G., 1996) at

(28)

where

If it is satisfied for , the orthogonality condition is also satisfied for any abscissa
belonging to [0, L]. In our case, for defining both ss v and sm , we introduce the
following orthogonality condition which can be interpreted as an extension of the
Saint-Venant principle:

(29)

If the condition holds for , it also holds for any belonging to [0, L]. For
introducing the data at the extremities and for eliminating s e x , we follow the
technique that we described in (Ladevèze P., Simmonds J.G., 1996), technique for
which some additional but separate 3D finite element calculation have to be done
at the extremities. It follows a little equation system which gives:

– the generalized quantities
– with and

4.5. AN EXAMPLE

Let us consider an isotropic circular tube submitted to two extremity loads which
are equilibrated by an uniform axial load density. Using classical notations, the
data are E = 100000M Pa, v = 0.3 and the figure (2) gives the loading.

Figures (3) and (4) give the Mises stress computed with the exact beam theory
following the proposed numerical method.

4.6. CONCLUSION

The exact beam theory is a very straight forward way for calculating 3D dis-
placements and stresses even if there is a strong interaction between the “local-
ized” effects which occur in the neighborhood of the extremities and of the cross-
section discontinuities. Further works will extend it to non piecewise constant
cross-section, elastic constants and to curved beams.
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Figure 2. Loading

Figure 3. Mises stress distribution of the Saint-Venant solution.

Figure 4. Mises stress distribution of "localized” effects defined on the deformed beam
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1. INTRODUCTION

Advanced supersonic and hypersonic space vehicles will experience very high tempera-
tures and pressure gradients during their flight missions.

Moreover, these vehicles will typically experience these loadings in a dynamic envi-
ronment. A problem of crucial importance toward the rational design of their structural
subcomponents consists of the possibility to accurately determine their load carrying ca-
pacity. The exhaustive use of the load carrying capacity of such structures can dramat-
ically contribute to the increase, without weight penalties, of the performance of such
vehicles. Due to thermomechanical load interaction, changes in the vibration character-
istics of structures and implicity of their dynamic response and flutter are likely to occur.

As a result, a better understanding of the effects of thermomechanical loads on the
behavior of vibrating flat panel constitutes a fundamental step in determining and under-
standing the overall structural behavior of structural subcomponents.

A great part of flight vehicle structures consists of plates and shells reinforced by
stiffeners. Such stiffened structures contribute, among others, to achieve low weight and
high stiffness, reduced deflection and an enhanced load carrying capacity.

In spite of the great importance upon the analysis and design of advanced flight ve-
hicle structures, results on static and vibrational non-linear response of stiffened panels
under thermomechanical loading, appear to be extremely scarce.

The surveys in Refs. 1 through 5, were comprehensive accounts on the effort carried
out in this area are provided, underline in full the absence of results in this area. To the
best of authors’ knowledge, the only results obtained via the finite element method are
contained in Ref. 6.
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2. Analysis Description. Basic Equations

Consider the case of a rectangular isotropic thin plate of edge lengths L1 and L2 , and
thickness of h, eccentrically reinforced by orthogonal stiffeners. One assumes that the
stiffener spacing ls and l r in the direction ξ1 and ξ2, respectively are constant and small
enough so that the smeared out procedure may be applied. One assumes that the panel is
exposed to a uniform through the thickness temperature

(1)

measured from a stress-free temperature Tr . This temperature field will be referred in the
sequel to as the membrane temperature. Such a temperature distribution can be experi-
enced during the steady-flight of a high-speed flight vehicle. In Eq. (1), ξ1 and ξ2 are the
in-plane Cartesian orthogonal coordinates of the mid-plane of the plate, while ξ3 is the
transversal coordinate, positive in the inward direction.

We also will assume the existence of an initial geometric imperfection

that refers to the transverse displacement in the unstressed configuration of
the panel.

In the context of the 3-D geometrically non-linear elasticity theory, the strain-
displacement relationships in Lagrangian description specialized to the case of the von-
Kámán’s approximation is:

(2)

where  denote the 3-D displacement components. By convention,
the transverse deflection is measured from the imperfect
surface, in the positive inward direction. Consistent with the Kirchhoff’s hypothesis, the
expression of the strain tensor components is

(3)

where

(4a)

and

(4b)

define the membrane and bending strains, respectively. Herein vα and v3 denote the in-
plane and transverse displacement components, respectively, while In
addition, the Greek and Latin indices range from 1 to 2, and from 1 to 3, respectively.

The compatibility equation that will be useful in the formulation of the governing
equations, obtained by eliminating vα in Eq. (4a) is given by:

(5)
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Upon retaining the transverse inertia term only, the equations of motion, are expressed
as:

(6a)

(6b)

Herein L αβ and Mαβ denote the stress-resultant and stress-couple components, respec-
tively, the lateral pressure, m0 the reduced mass term, while the su-
perposed dots denote time derivatives.

Within the eccentrically and smeared stiffener concept which is adopted here (see e.g.
Refs. 7 and 8), due to the asymmetry of the resulting panel, the constitutive equations
feature bending-stretching coupling.

The relevant constitutive equations, where the above mentioned coupling terms are
underscored by a discontinuous line, are displayed next:

(7a-f)

In these equations A and D denote the stretching and bending stiffness quantities of the
panel skin; v denotes Poisson’s ratio of the panel skin material; zs , zr are referred to as
the stiffener eccentricities and are defined as the distances from the stiffener centroidal
axis to the plate mid-plane (positive for the inside stiffeners); Es , E r are the moduli of
elasticity of stiffeners ls , l r denote the stiffener spacings measured between their axial

lines; As , Ar denote the stiffener cross-sectional areas

Is , Ir are the moments of inertia of stiffeners about the plate skin mid-plane; (Fs , Fr ) ≡

are the first moments of stiffeners about the mid-plane plate skin,

where β s and β r denote the stiffener widths; , where E and α de-
note the Young’s modulus and thermal expansion coefficient, which can be associated
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with the materials of plate skin and stiffeners, and s and r denote the quantities rele-
vant to stiffeners running in the ξ1 and ξ2 directions, respectively. The main geometrical
characteristics of stiffened panels are depicted in Fig. 1.

Figure 1: Geometry of the stiffened plate and coordinate system.

The coupling appearing in the constitutive equations will further be reflected in the
governing equations, implying, among others, that a temperature field, uniformly dis-
tributed throughout the thickness of the panel and stiffeners will induce bending from the
onset of heating. This reverts to the conclusion that in contrast to the case of geometri-
cally perfect panels, (being at the same time non-stiffened, or symmetrically stiffened), in
the present case, the panel will not exhibit the thermal buckling bifurcation in the classi-
cal Saint-Venant sense. It should be mentioned that consistent with the smeared stiffener
concept, the stiffeners in both directions should be relatively closely spaced implying that
the spacings l r and l s are assumed to be small enough.

2. Governing System

In the present study, the nonlinear dynamic equations governing the thermomechanical
response of stiffened flat panels are represented in a form which generalizes the classical
von Kármán-Marguerre nonlinear plate theory, in the sense that the relevant equations
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include the effects of initial geometric imperfections and the presence of uni/biaxial stiff-
eners. By using a similar procedure to that developed e.g. in Ref. 10, the governing
equations are reduced to two partial differential equations in terms of the Airy stress
function F(≡ F (ξ 1 , ξ 2 , t)) and the transverse deflection v3 (ξ1 , ξ2, t) as:

(8a)

(8b)

These equations can be viewed as the extended counterpart for stiffened plates of the clas-
sical von-Kármán-Marguerre equations. Herein ∆ (·) denotes the 2-D Laplace operator,
m0 is the reduced mass of the reinforced plate, whereas the Airy’s function, F is defined
as Lαβ = c αω cβδ F, where c

ωδ αβ is the permutation symbol and the Einstein summation

convention over repeated indices is implied. The coefficients appearing in Eqs. (8) can
be found in Ref. 9.

A simple inspection of the linearized version of Eqs. (8) reveals that
play the role of coupling stiffness quantities, in the sense that these are associated with
the bending occuring in the stretching governing equation, Eq. (8a). On the other hand,
the coefficients 1 through 3 are associated with the stretching occuring in the bend-
ing governing equation Eq. (8b); the coefficients 4 through 6 are associated with the
newly induced bending terms occuring in the bending governing equations, whereas the
coefficients 7 and 8 reflect the stretching influence induced by the membrane tem-
perature in conjunction with the non-symmetric reinforcements, occuring in the bending
governing equation. In view of their expression it is readily seen that in the absence of
any reinforcement, these coefficients vanish, and the linearized counterpart of Eqs. (8a)
and (8b) become decoupled.

In the present study the edges are considered to be simply supported. It is supposed
also that the tangential motion of the panel in the normal direction to the edge is uncon-
strained, i.e. the edges are freely movable. For these boundary conditions, the transverse
displacement at each edge, the tangential stress resultant and the bending stress-couple
are zero- valued quantities. Denoting by n and t the in-plane directions normal and tan-
gential to the panel edge, the pertinent boundary conditions are expressed as:

v3 = 0; Mnn = 0; L n t = Lnn = 0. (9)

where, when n = 1, t = 2 and vice-versa.
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3. Solution of the Nonlinear Equations

The nonlinear boundary-value problem in the present study is solved using Galerkin’s
method. First, the transverse deflection v3 is expressed in terms of functions that satisfy
the simply supported boundary conditions

(10)

where (t) are the modal amplitudes, whereas the
initial geometric imperfection is expressed as

(11)

where are the modal amplitudes of the initial geometric imperfection shape. Sim-
ilarly, the applied temperature and lateral pressure are most generally represented by
Navier-type double Fourier sine series. In the present study, the temperature and lateral
pressure are represented as:

(12a)

(12b)

where  and qmn are the modal amplitudes of and q3 , respectively.
The displacement and temperature expansions are substituted into the Eq. (8a), and

the Airy’s stress function is obtained by solving the resulting linear non-homogeneous
partial differential equation (see in this sense Ref. 10). Its solution is

(13)

where the expressions of the coefficients are not displayed here.
The remaining nonlinear partial differential equation, Eq. (8b), is converted into a set

of nonlinear ordinary algebraic equations using Galerkin’s method. To this end, substi-

tution of and q3 as expressed by Eqs. (10), (11), (13) and (12), respectively,
in (8b) followed by its multiplication by sin and integration of the obtained
equation over the panel area yields the following set of M × N nonlinear ordinary differ-
ential equations for each set of wave forms determined by the index pair ( m, n )

(14)
where the indices m and n are not summed and have the values m = 1, 2, . . . , M and

n = 1, 2, . . .) N.
In equation (14) P1 and are linear, while P2 and P3 are quadratic and cubic

polynomials in the unknown modal amplitudes  fmn (t), respectively. The coefficients
Amn , Bmn and Rmn are constants that depend on the material and geometric properties
of the plate and stiffeners. The explicit form of Eq. (14) is not displayed in this paper.
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4. Vibrational Behavior About a Mean Static Equilibrium Configuration

Following the procedure used in a number of previoius papers, (see Refs. 11 and 12), the
unknown modal amplitudes are expressed as

where ( t) represents small vibrations  about a mean static equilibriu m  configurationmn

described by mn

In this equation, the time-dependent  part is considered small as compared tomn

and in the sense ofmn mn

(15)

(16)

The equations for the static prebuckling and postbuckling equilibrium states are obtained
by discarding the inertia terms given by A in equation (14), and recognizing thatmn mn

the solution to the resulting equation is . The equations for small vibrations about themn

static equilibrium state are then obtained by substituting equation (15) into equation (14)
and enforcing the smallness condition given by equation (16). The resulting equations of
motion are

(17)

where

(18)

for values of m = 1,2, ..., M and n = 1, 2 ..., N. The constant coefficients A mn are
functions of the material and the geometric properties of the panel.

Equations (17) govern the small vibrations about a given static equilibrium state and
are solved for synchronous motion by expressing

(19)

Substitution of equation (19) into (17) yields an algebraic eigenvalue problem given by

(20)

for values of m = 1, 2,  ..., M and n = 1, 2, ..., N. The frequencies ωmn in equation (20)
are the unknown quantities to be determined, and the corresponding amplitudes aremn

indeterminate.
The static equilibrium configuration for a given flat panel is obtained by solving the

static counterpart of the nonlinear algebraic equations given by Eqs. (14) via Newton’s
method. Every solution to Eqs. (14) represents a possible stable or unstable equilibrium
configuration. The stability of each equilibrium configuration is determined by evaluating
the second variation of the total potential energy of the panel.
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5. Possibilities to Use the Derived Governing System and Solution Methodology as
to Investigate the Supersonic Flutter and Postflutter of Stiffened Panels

The postflutter behavior is a result of the coupling between bending and stretching in-
duced by the large deflection of the panel. The balance of the destabilizing dynamic
pressure and stabilizing membrance stresses results in a sustained limit-cycle motion.
However, depending upon the specific geometric and elastic characteristics of the panel,
and/or the level of the supersonic flight measured in terms of the flight Mach number, a
violent transition from the undisturbed equilibrium state to finite motion may occur even
at the pre-flutter flight velocities. The flutter boundary is correspondingly referred to as
benign (soft) or dangerous (hard), depending on whether the transgression of it is accom-
panied by a monotonous increase of the oscillation amplitude, or by an explosive failure
of the structure, respectively. It clearly appears that identification of the circumstances
under which the latter type of flutter occurs constitutes a vital problem in the aeroelastic
design of supersonic/hypersonic flight vehicles.

The increased flexibility of next generation of high speed space vehicles compounded
with the high temperatures induced by aerodynamic heating can result not only in the
diminishion of the flutter speed, but in a conversion of the flutter boundary from benign
to catastrophic.

In addition to the previously mentioned circumstances, the nonlinear unsteady aero-
dynamic loading occuring at high supersonic Mach numbers can further contribute to the
conversion of the flutter boundary to a catastrophic one. In order to address the problem
of the postflutter behavior, the geometrically nonlinear equations of the panel, considered
together with the nonlinear unsteady aerodynamic loads at high Mach numbers should be
considered.

For the approach of the supersonic/hypersonic flutter of stiffened reinforced panels we
assume that the flow takes place over the upper face of the reinforced panel, in the direc-
tion parallel to the ξ1 -coordinate. In these conditions the unsteady aerodynamic load ob-
tained within the third-order piston aerodynamic theory can be expressed as q

3
( ξ 1 , ξ

2
, t)

where A (·) is the aerodynamic operator defined as

(21)

U∞ being the velocity of the undesturbed flow, M is the flight Mach number,
a∞ and p∞ the undisturbed velocity of sound and pressure, while k  is the polytropic gas
coefficient.

The method previously presented can be used to address also the linear and nonlinear
flutter of stiffened panels. However, in contrast to the representations (10) in this case,
as it was documented in the specialized literature (see e.g Refs. 10 and 13), for simply
supported boundary conditions, the transversal deflection should be expressed as:

(22)

Further, the procedure to determine the Airy’s function and the nonlinear, system of equa-
tions, similar to that provided in the absence of aerodynamic flow should be followed.
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Moreover, representation (15) will be used, where and mn (t) provide in thismn

case the thermoaeroelastic static equilibrium and the self-excited aeroelastic vibration,
respectively. There is no question that in this case the counterpart of Eq. (14) will contain
the flight speed (in terms of the Mach number).

The aeroelatic counterpart of Eq. (20) can supply, when is linearized, the flutter
boundary, and in the nonlinear form the postflutter behavior as influenced by the stiffen-
ers, the temperature field and the external load.

6. Numerical Simulations and Discussion

Using the nonlinear governing equations, an assessment of the effects played by the uni-
form through the thickness temperature field and a lateral pressure on the frequency-
temperature interaction of stiffened, geometrically imperfect flat panels will be accom-
plished. Throughout the numerical applications, the case of a simply supported panel of
a square planform (L1 = L2 ≡ L) is considered. One also assumes that both the panel
and stiffeners are of aluminum i.e. that Er ≡ Es ≡ E = 10.4 × 106 psi (≡ 7 3GPa),
v = 0.32 and α  = 13.15 × 10–6 in/in/0 F(≡ 23 × 10 –6 mm/mm/ 0 C ). It is also assumed,
unless otherwise specified, that L1 /h = 40. For an uniaxially stiffened panel, say in the
ξ1- direction, one should consider in the ξ2 - direction that br = β r = 0 andlr ⇒ ∞ .

In the displayed plot denote the dimensionless amplitude
in the mode (1,1) of the transversal deflection and initial geometric imperfection, evalu-
ated at the center, ξ1 = ξ2 = L /2 of the panel, while denotes the
dimensionless amplitude of mode (1,1) of the lateral pre-load.

The response of reinforced panels to a temperature rise measured in °F , as well as

the effects of the amplitude of the membrane temperature evaluated at the center of
the panel, ξ1 = ξ2 = L/2 and of the ratio bs/ h of uniaxial stiffeners on the dimension-
less fundamental vibration frequency (squared) of geometrically
perfect unloaded panel are displayed in Fig. 2. In this figure a number of three scenarios,
related with the values of bs/h in the sequence bs /h = 3, 4 and 5 are considered.

An important trend emerging from this plot lies on the fact that, even in the pres-
ence of a uniform through thickness temperature field and in the absence of the pre-load,
the geometrically perfect stiffened panel does not experience buckling bifurcation. In
other words, under such conditions and in contrast to the case of an unstiffened panel, a
stiffened one will deflect from the onset of the temperature rise.

Another results is concerned with the implication of the stiffener height
on the non-linear response. As it becomes evident, the increase of results in a notice-
able increase of the thermal loading capacity of the panel.

The results displayed in the companion graph, Fig. 3, obtained for the same geometric
and physical conditions reveal that the fundamental frequency squared decreases linearly

with increasing reaches a minimum and afterwards increases monotonically with
the further temperature rise. This trend is due to the stiffening caused by the increased
participation of the membrane stiffness as the deflection becomes larger. From the same

graph it becomes evident that: i) the eigenfrequencies (corresponding to
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Figure 2: Effect of the uniaxial stiffener hight on the nonlinear response of a
geometrically prefect plate under a temperature rise

Figure 3: Frequency-temperature interaction for the panel descibed in Fig. 2.
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increase with the increase of , ii) with the increase of a shift of the minimum of
toward larger temperature amplitudes, accompanied by an increase of the frequency

squared, is experienced.
In Fig. 4 the case of a square uniaxially reinforced plate was considered, featuring

the characteristics = 2.5, ( ≡ βs / h ) = 1. In the plot, various scenarios indicated
by the characteristics provided in the brackets ( L1/ h, )in the same sequences have
been provided. Here is the amplitude of the transversal load applied to the plate in the  
conditions of T11 = 0. The results emerging from this plot reveal that the thermal loading
capacity increases significantly with the decrease of the ratio L1 /h. In addition, as is
readily seen, the transversal load plays a similar role as an initial geometric imperfection.
It is also seen that even in the absence of the transversal load, due to the inherent bending-
stretching coupling induced by the asymmetry of the structure, the panel does not exhibit
the buckling bifurcation in the Saint-Venant sense.

The dynamic counterpart of Fig. 4 is displayed in Fig. 5. Due to the absence of
buckling bifurcation, with the increase of the temperature the frequency does not become
a zero-valued quantity.

Moreover, this plot reveals that for smaller L1 /h, the minimum frequncy occurs a
larger temperatures as compared to the case of larger L1 /h. Moreover, also in this context
the lateral pre-load plays a similar role to an initial geometric imperfection.

In Figs. 6 and 7 the effects of the parameters contained in the brackets (βs /h, b s /h )
on the thermal loading carrying capacity and the freqency-temperature interaction are
revealed. One considers the uniaxially stiffened square panel without pre-load featuring
L 1 / l s = 5. The values of the parameters in the brackets characterize the various curves
in Figs. 6 and 7.

The results reveal that the increase of the relative hight of the stiffener yields a
larger increase of the load carrying capacity than that induced by the increase of

The same trend occurs in the case of the frequency-temperature interaction, in the
sense that the increase of has a more powerful effect toward the increase of the funda-
mental frequencies than the increase of the parameters

In Figs. 8 and 9 one considers the case of a square panel featuring L1 / h = 35, b s / h =
2.5, β s / h = 1, that is subjected to a pre-load of amplitude = 10. Both case of uni-
axially and biaxially reinforced panels are included in the analysis. In the latter case,

bs = b r , β s  = β r . The following scenorios identified by the abbreviations (R1, ) and

(R2, ) are displayed, where R1 and R2 concern the uniaxially and biaxially reinforced
panels, respectively.

Figure 8 reveals that a biaxially reinforced panel can carry a larger temperature panel
than a uniaxially reinforced one.

The results from Fig. 9 show that the initial geometic imperfection plays on the
frequency-temperature interaction, a similar role to that of the lateral pre-load. It is in-
teresting also to see than an initial geometric imperfection of fixed amplitude plays a
strong role toward increasing the minimum fundamental frequency in bio-axially rein-
forced panels than in their uniaxially reinforced panel counterparts.

Finally, is worthwhile to recall a results obtained in Ref. 14 according to which the
smeared out theory of stiffened panels can not be replaced by an equivalent orthotropic
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Figure 4: Effect of the parameters on the nonlinear response of a geometri-
cally perfect uniaxially stiffened panel

Figure 5: Frequency-temperature interaction for the panel described in Fig. 4.
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Figure 6: Influence of parameters included in the bracket, on the nonlinear
response of a uniaxially reinforced panel. Geometrically perfect panel, L1 / l s = 5.

Figure 7: Frequency-temperature interaction for the panel described in Fig. 6. (The
curves are identified by the values of the parameters included in the bracket and
indicated in previous figure.
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Figure 8: The effects of the uni (R1) and biaxially (R2) stiffeners, and of the initial

geometric imperfection (R1, ), (R2, ) on the thermal load carrying capacity of the
panel (L1/h = 35).

Figure 9: Frequency-temperature interaction for the panel described in Fig. 8. The curves

are identified by the values of parameters included in the brackets (R1, ), (R2, )
indicated in previous figure.
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theory. In this sense, the results concerning a comparison of predictions obtained by
the application of the two theories have revealed significant differences, even in linear
problems.

7. Conclusions

A parametric study of the non-linear static response and vibration behavior of eccen-
trically reinforced flat panels featuring initial geometric imperfections and subjected to
thermal and mechanical loads has been presented. The loads considered in this study
consists of a lateral pressure and a non-uniform membrane temperature field. Throughout
this study simply-supported panels are considered. The results show that the reinforce-
ments, initial geometric imperfections, and tranverse lateral pressure are all significant
factors that should be considered in the dynamic design of panels subjected to a thermal
field. Moreover, the beneficial contribution played by the reinforcements on the thermo-
mechanical load carrying capacity and the vibrational behavior of flat panels was also put
into evidence.

Apart from this, several elements enabling one to address various problem of the
supersonic/hypersonic flutter instability of reinforced flat panels subjected to a membrane
temperature and a mechanical pre-load have also been presented.

It is hoped that the results of this study will be useful toward a better understand-
ing of the effects induced by the reinforcements on the thermal load carrying capacity
and dynamic behavior of flat panels, and provide a basis for the approach of the super-
sonic/hypersonic linear flutter and postflutter of stiffened panels under a temperature and
transversal load.
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Bending and Twisting Effects in the Three-Dimensional Finite
Deformations of an Inextensible Network
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Abstract. A theory is presented for bending and twisting effects in three-dimensional
deformations of an inextensible network. The networks are modeled as material surfaces
endowed with kinematical variables representing bending and non-standard fiber twisting
effects. By using the minimum-energy principle, the Euler-Lagrange equations and boundary
conditions are derived. Also, the compatibility conditions are obtained. Finally, the Euler-
Lagrange equations are simplified and then specialized to obtain the equilibrium equations of
Wang and Pipkin (1986a) and those for an inextensible rod.

1. Introduction

Recently, Simmonds (1985, §2) considered elastic surfaces with resistance to strain and
flexure. Wang and Pipkin (1986a, b) considered inextensible nets with bending stiffness. In a
series of papers by Hilgers and Pipkin (1992a,b, 1993, 1996),  the theory of elastic sheets was
developed independently by introducing the second derivatives of the deformation as well as
the first derivatives into the strain-energy density. Hilgers (1997) also examined dynamic
effects.

In Luo and Steigmann (2000) a theory is established by considering the effects of bending
and twisting in an extensible network for three-dimensional  deformations. In the present work
we elucidate the structure of the simplest purely mechanical theory of networks that models
both bending and twisting  effects for finite deformations in 3-space. The model may be viewed
as a generalized plate/shell theory. The network is composed of two families of inextensible
elastic fibers. We assume that the cross sections of each fiber remain plane and suffer no
deformation. We assign a triad of embedded orthonormal vectors to every material point of the
fiber line to characterize the properties and orientations of the cross section at that point. By
using these vectors we give a clear physical interpretation and mathematical representation of
the curvature and twisting angle associated with each fiber. In Section 2, we establish the
notation and discuss the kinematical and constitutive hypotheses. In Section 3, we postulate a
particular form of the potential energy for conservatively-loaded networks and determine its
variational form. We adopt variational techniques used in Steigmann (1996). In Section 4, by
applying the minimum-energy principle to the potential energy, we derive the Euler-Lagrange
equations and boundary conditions. We also derive the compatibility relations. In Section 5, the
Euler-Lagrange equations are simplified and then reduced to obtain those of Wang and Pipkin
(1986a) and those of an inextensible rod.
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2. Kinematical and Constitutive Hypotheses

We consider a sheet of fabric that initially occupies a region D with the boundary curve C in
the x-y plane. The sheet is composed of two families of inextensible fibers, which initially lie
parallel to the x and y axes; thus every line x=constant or y=constant in D is regarded as a
fiber. The two families of fibers are orthogonal in the reference configuration. They are
assumed to be continuously distributed and fastened together at their points of intersection to
prevent slipping of one fiber family relative to the other. The sheet is treated as a continuum.

We use R and r to denote the respective position vectors in the reference and current
configurations. Let A and B be the unit vectors tangential to the fibers in the reference
configuration, and a and b be the unit vectors tangential to the fibers on the deformed
surface. Then

(2.1)

The vector A is tangential to the curve occupied by a fiber y=constant in the reference
configuration and B is tangential to a fiber x=constant. We call the fibers in the reference
configuration A - and B -lines, respectively. Likewise, the vectors a and b are, respectively,
tangential to the deformed A - and B -lines. We call the deformed A - and B -lines,
respectively, a - and b -lines. In this paper, Greek indices, except α and β , range from 1 to 2,
Latin indices, except a and b, range from 1 to 3, and the summation convention for repeated
indices is employed. The Greek indices α  and β range from 2 to 3. The Latin index a or b

will be used as a superscript to indicate that the parameters are associated with a - or b -lines.
They are not the summation indices when they are repeated in an expression.

After deformation, the point at R(x, y) displaces to r(x, y) and each fiber may suffer

twisting. We associate two orthonormal bases {A i (x, y)} and {Bi (x, y)} with A - and B -lines,

respectively. They satisfy and

Then we invoke the Bernoulli-Euler hypotheses for each fiber: First we suppose that cross-
sections of each fiber remain plane, suffer no strain, and are normal to the fiber in every
configuration. We further assume that deformations from {R, A i , B i } to {r, ai , b i } are
inextensional and orientation preserving. These hypotheses are equivalent to

(2.2)

where δ i is the Kronecker delta and e i j k

nonholonomic constraints

is the permutation symbol, together with thej

(2.3)
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The two equations in (2.3) imply that x and y, respectively, measure arc lengths of a - and b -
lines and a 1 and b 1 , respectively, coincide with the unit tangents a and b in the current
configuration. The two families of fibers are initially orthogonal. However after deformation
they are not necessarily orthogonal. The fiber shear angle γ is defined by

sin γ = a 1 • b 1 . (2.4)

The unit normal to the deformed sheet is

Next, let

(2.5)

(2.6)

We will show that the twists and curvatures of the a - and b -lines can be expressed in terms of

κ a
i and κ b

i respectively. Let us introduce the Frenet triad of each fiber line, and let

{a 1 , na , ba } and {b 1 , n b , bb } be the Frenet triads of the a - and b -lines, respectively. Then,
we have

(2.7)

(2.8)

The symbols η a and ηb in (2.7) and (2.8) denote the principal curvatures of the a - and b -

lines, respectively. The symbols τa and τ b in (2.7) and (2.8) represent the torsions of the a -
and b -lines, respectively. It can be readily shown from (2.7) and (2.8) that

(2.9)

Note that since the fibers are straight in the reference configuration, their curvatures there are
identically zero. We now define an angle θ a (x, y) of the a -line and an angle θb (x, y) of the

b -line such that

(2.10)

(2.11)
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where y in θ a(x, y) and x in θ b (x, y) assume constant values along the respective a - and
b-lines. Substituting (2.10) and (2.11), respectively, into (2.6), and making use of (2.7), we
find

(2.12)

(2.13)

Equations (2.12)2, (2.12)3, (2.13)2 and (2.13)3 lead to

(2.14)

We use β a and β b to denote the respective twists of the a - and b-lines (see Art. 253 of
Love (1927)). Then, we have

(2.15)

Equations (2.14) and (2.15) give the explicit expressions for the twists and curvatures of the a -

and b -lines in terms of and respectively. In the reference configuration, every fiber
line is a plane curve and each fiber suffers no twisting. Therefore, in the reference
configuration, the twists of every fiber are identically zero.

Next, we introduce another triad for each fiber line. In Section 4, where we derive the
compatibility conditions, we will make use of this triad. Define auxiliary unit vectors

(2.16)

associated with the current configuration. Then {a 1, p a, n} and {b1, p b, n} are right-handed

orthonormal bases for 3-space. In addition we define an angle (x, y) of the a -line and

another angle (x, y) of the b -line such that

(2.17)

(2.18)

where y in (x, y) and x in (x, y) assume constant values along the respective a - and

b -lines. Then, the partial derivatives of a 1 and b 1 can be expressed as

(2.19)
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(2.20)

The coefficients φ a and φb in (2.20) are the so-called Tchebychev curvatures of a - and b -

lines, respectively, according to the terminology of Kuznetsov (1982). The coefficient φa

measures the tangential part of the rate of change of a1 with respect to arc length along a b -

line. The coefficient φb has a similar interpretation. The coefficient τ in (2.20) is the torsion
of the deformed network and is defined by

(2.21)

3. Potential Energy and its Variation

In this section, we will determine the potential energy of the sheet of fabric and its variation.
Let W = denote the strain energy per unit initial area, where we

suppress the values of and β b at the reference configuration and the dependence

of the function w on position. We remark that the list of arguments of the function w(·) reflects
that notion that each fiber is transversely isotropic with respect to its tangent (see (2.14)). Note
that in this paper, the variables and β b at the reference configuration are
assumed to be zero. The potential energy functional E(r, ai , b i ) is of the form

where dA = dxdy, the symbol s represents arc length along the

denotes the partial derivative of r with respect to arc length in the  outward normal direction in
the x-y plane. The prescribed functions f(x, y) and t(s) are used to represent dead loads with

boundary curve C, and

f (x, y) per unit initial area and t(s) per unit initial length on the boundary. The symbols

and (s) denote the dead loads per unit initial length on the boundary
and are related to the boundary conditions for the twisting couples, which can be seen in
Section 4. Using the same methods as those used in Section 3 of Hilgers and Pipkin [5], we can
show that f(x, y) and t(s) must satisfy the equilibrium condition

(3.1)

(3.2)
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and m satisfies the equilibrium condition

(3.3)

where (3.2) and (3.3), respectively, correspond to equations (3.8) and (3.9) in Hilgers and

Pipkin (1992a). If we interpret m as a couple per unit length applied to the edge of the

sheet, then m will give us the information about the couple m after the deformation has

been determined.
Let for some positive number ε0, and consider a smooth one-parameter

family of kinematically admissible configurations

with Here kinematic
admissibility means that, for each fixed ε , r * , a i * and b i* are at least

piecewise C 2 and satisfy

(3.4)

If {r , ai , b i} is a minimizer of the energy, then we require that

(3.5)

Let superimposed dots denote derivatives of functions with respect to ε, evaluated at ε = 0.
As ε → 0, we have

(3.6)

where

(3 .7)

Let be the rotation that maps {Ai} onto {ai
*}:

Then

(3.8)

(3.9)

where
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is a skew tensor and is its axial vector. Consequently,

where c a is the value of at ε = 0 .

Let be the rotation that maps {Bi } onto

Then

where
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(3.10)

(3.11)

(3.12)

(3.13)

(3.14)

is a skew tensor and is its axial vector. Likewise, we obtain

(3.15)

where cb is the value of at  ε = 0 .
Moreover, with the aid of (3.7), (3.11) and (3.15), we establish the variational version of

the constraints (2.3):

With the aid of (3.11) and (3.15), from (2.6) we obtain the variation of κi :

(3.16)

(3.17)

and differentiation of (2.12)2 and (2. 12)3 leads to

(3.18)

From (3.17), (3.18) and (2.15)1, we obtain the variations of ηa and β a
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(3.19)

Likewise, we have

Using (3.11), (3.15), and (3.16), from (2.4) we also obtain the variation of sin γ

We further define

(3.20)

(3.21)

(3.22)

Since Ma and N a  are directly related to ηa  and βa  respectively, they can be interpreted as the
bending and torsional moments on the cross sections of a -lines. There is a similar

interpretation for Mb  and N b .
According to the multiplier rule of the calculus of variations (see Bliss (1946) and Elsgolts

(1977)), an admissible configuration that renders E(·,·,·) stationary is also a stationary
configuration for the functional

where f a and f b are vectors of Lagrange multipliers.

(3.23)

Set

(3.24)

Let , where and are defined by (3.6). According to the

stationary-energy principle, we require that

(3.25)

With the help of (3.16), (3.19), (3.20), (3.22) and (3.24), from (3.1) we reduce the variation of
F t o
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(3.26)

(4.1)

4. Equilibrium Equations, Boundary Conditions and Compatibility Conditions

In this section, we will first derive the equilibrium equations and boundary conditions from
(3.25) and then derive the compatibility conditions.

First, we will simplify the line integrals in (3.26). Let us confine attention to the line

integral

Multiplying both sides of (3.16)1 by na  and noting that {a1, na, ba} is orthonormal, we
find

The derivative of u with respect to arc length along the boundary curve C is and its

derivative with respect to arc length in the outward normal direction is . Then

(4.2)

and thus

(4.3)
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Substituting (4.3)1 into (4.1) yields

Similarly, we have

With the aid of (4.4), (4.5), (3.22)1  and (3.22)2, we obtain

(4.4)

(4.5)

(4.6)

Then

(4.7)

Suppose the boundary curve C is piecewise smooth with n corners. We use Ci  to denote
the ith corner. Let ui  denote the first variation of r evaluated at Ci . We obtain from (4.7)

(4.8)
where

(4.9)

is the force at Ci required to support the deformation. Note that if C is smooth, then Fi

vanishes.
Making use of (3.22)3  and (3.22) 4, we find
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Then,
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(4.11)

Next, we restrict attention to the last line integral in (3.26). Let denote the component

of  along a i . Define to be the component of  along bi . Then, we have

(4.12)

With the aid of (4.12), the last line integral in (3.26) can be expressed as

(4.13)

At each material point of the network, ca  and cb are independent of u and respectively

related to and through (3.16). If we observe (3.16)1 , we find that only ca • a 1 is

independent of , and ca  • a 2  and ca • a 3  are determined by . There is a similar

interpretation for the relation of cb  • bi  to , which may be deduced from (3.16)2 . Therefore,

with the aid of (4.3), the integrands in the second and third integrals of (4.13) may finally be
expressed in the form of the terms on the right-hand side of (4.6). To avoid redundancy, we set

(4.14)

Thus, we have

(4.15)

Substituting (4.8), (4.11) and (4.15) into (3.26) yields
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(4.16)

and on the boundary curve C. We then

Next, with the aid of (4.16), we derive the equilibrium equations and boundary conditions by

using the requirement = 0, given by (3.25). We first apply the condition to cases in which

obtain

(4.17)

Let a i  and f a respectively denote the components of i

and f a, which is a vector of Lagrange multipliers, along ai . Then, we may choose fa
 α

(α = 2, 3) in F a, whose expression is given by (3.24)
1

, such that
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a α = 0 . (4.18)

Let b 1 and f1
b  respectively denote the components of

a n d f b , which is also a vector of Lagrange multipliers, along bi . Similarly, we choose fα
b

(α = 2,3) in F b, whose expression is given by (3.24)2 , such that

bα  = 0. (4.19)

The components f 1
a

 and f1
b  will be determined by the equilibrium equations. With the aid of

(4.18) and (4.19), Equation (4.17) is reduced to

(4.20)

Since and u are arbitrary and independent from one another identically over

D, together with the aid of (4.18) and (4.19), we obtain the Euler-Lagrange equations as

follows:

(4.21)

Observing (4.21), we find that Fa  and Fb  may be interpreted as the respective forces on cross
sections of a - and b -lines. Given (4.21), the integral over D in (4.16) is absent.

We next consider variations such that and are respectively

arbitrary on the boundary curve C. We obtain from (4.16) the following boundary conditions:

is arbitrary; (4.22)

if u is arbitrary; (4.23)
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(5.1)

(5.2)

is arbitrary;

is arbitrary;

is arbitrary.

Finally, compatibility conditions are derived from the relations:

(4.24)

(4.25)

(4.26)

(4.27)

(4.28)

The first vector equation in (4.27) includes two scalar conditions:

where use is made of (2.20), (2.16) and (2.4). Following the same procedure as that in Section
5(c) of Steigmann and Pipkin (1991), with the aid of (2.20), (2.16), (2.4) and (2.19), we find
that the remaining two vector equations of (4.27) include the following three scalar conditions:

(4.29)

(4.30)

(4.31)

5. Simplification of Euler-Lagrange Equations and Two Special Cases

inextensible rod.
By (4.21) 1 , we have

In this final section, we will simplify the Euler-Lagrange equations given in (4.21) and then
reduce them to obtain the equilibrium equations of Wang and Pipkin (1986a), and those of an

Further, we have
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(5.5)

This implies that the sum of the terms in the brackets is parallel to a1 , with a value Ta a1 (say).
Consequently,

(5.3)

(5.4)

Likewise, we have

Thus, we have

Wang and Pipkin (1986a) considered an inextensible network with shearing resistance and
bending stiffness. They did not consider twisting effects. They assumed a special form of the
strain-energy function given by

(5.6)

where w0 (a1 •b1) is the energy due to the shearing stress and Γ, a positive constant, is the
associated stiffness. By using (2.4) and (2.7), equation (5.6) may be written as

(5.7)

Substituting (5.7) into (5.5), we obtain the following three conditions:

(5.8)

The three equations in (5.8) coincide with their counterparts (4.1), (4.5) and (3.4) in Wang and
Pipkin (1986a), respectively.

If we eliminate both the equations and terms pertaining to either the shear angle γ or to y
or b-lines in (5.5), we obtain the equilibrium equations for an inextensible rod

(5.9)
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where x is the arc length, and w is of the form w( ηa , βa ) with η a and β a , respectively,
representing the curvature and torsion of the rod.
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PLASTIC BUCKLING OF RECTANGULAR PLATES WITH RANDOM
MATERIAL PROPERTIES AND RANDOM LOADING:
A DEMONSTRATION OF PROBABILISTIC STRUCTURAL ANALYSIS

G. MAYMON
RAFAEL R&D
P. O. Box 2250
Haifa 31021, ISRAEL

1. Introduction

An engineering design is a process of decision-making under constraints of uncertainty.
The uncertainty in this process is due to the lack of deterministic knowledge of different
physical parameters and the uncertainty concerning models with which the design is
performed. This is true for all the engineering disciplines such as electronics,
mechanics, aerodynamics and structural analysis involved in any design.

The uncertainty approach to the design of subsystems and complete systems was
enhanced by the concept of reliability. Systems are analyzed for possible failure
processes and criteria, probability of occurrence, reliability of components, redundancy,
possible human errors in the production, and other uncertainties. Consequently, the
required reliability of a given design is defined with proper reliability appropriation for
subsystems. This required reliability certainly influences both the design and the
product cost.

Nevertheless, in most cases structural analyst is still required to supply a design with
absolute reliability, and most structural designs are performed using deterministic
solutions. To compensate for many uncertainties, structural designers use a safety factor
(lack of knowledge factor?), thus recognizing de facto the stochastic nature of many of
the design parameters and models.

During the last decade, the need for application of probabilistic methods for
non-deterministic structures has started to gain acceptance within the structural design
community. Many designers have started to adopt the stochastic approach and the
concepts of structural the stochastic approach and the concepts of structural reliability to
present designs. It is likely that in the near future, this approach will start to dominate
structural analysis procedures. Thus, the structural design will become increasingly
integrated into the total system design, where reliability concepts have already been
implemented.

The main sources of uncertainties in structural analysis and design are the model that
is used, the loads that are applied to the structure and the uncertainties inherent in
various structural parameters. In this paper only the last uncertainties will be discussed
and demonstrated. The treatment of these uncertainties, which is part of the probabilistic
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analysis of structures, has become extensive and practical only in the last 10-20 years,
although pioneering studies were published earlier, in the late 1960s and the early 1970s
(especially by scientific journals of the civil engineering community). Tremendous
progress has been made in the formulation of mathematical models and the
establishment of several algorithms for the determination of the behavior of stochastic
structures submitted to excitation of stochastic loads (i.e. in [1], [2], [3] and [4]). This
progress was followed by the adaptation by the industry of these relatively new models
and algorithms in the structural design process of practical structures. It is most likely
that in the near future increasingly more design codes and specifications will include the
use of probabilistic analysis. The introduction of these methods into practical
applications will be quicker than the introduction of finite element programs, due to the
large infrastructure that already exists in computational analysis and the rapid advances
in computational power.

For many years non-deterministic structures were analyzed using simulation methods
(such as the Monte Carlo simulation). These simulations are time consuming, and
sometimes their use becomes prohibitive for practical industrial applications due to the
deal of time required for the simulation of a complex structural design, which interferes
with the schedule of any project.

In the last two decades, numerical algorithms using non-simulative methods were
developed. Also, more advanced simulation methods, which decrease tremendously the
number of required computations, were developed (i.e. in [5], [6] and [7]). These
developments led to the elaboratin of several computer programs that solve the
probabilistic structural analysis problem within a reasonable and practical time frame,
and are also suitable for industrial use (i.e. in [8], [9] and [10]).

It is the purpose of this paper to describe the basic concepts involved in a stochastic
structural analysis, and to demonstrate these concepts by applying stochastic analysis to
the problem of plastic buckling of rectangular plates whose material properties are not
deterministic. The selection of random material properties does not imply that the same
methods cannot be used for other non-deterministic properties such as geometry,
dimensions and loads.

2. Failure Surface: Basic Concepts

A failure surface (or failure function) is a multidimensional function of all the random
variables of a design problem, which separates between the failure space and the
success space of a structural design (see [11]). On one side of this multidimensional
surface the structure is safe, and on the other side it fails. The basic case includes two
random variables. R is the allowable quantity (stress, displacement, etc.) in the structure
and is designated “the resistance” term. S is the actual quantity in the structure and is
designated “the load effect” term. Traditionally, a negative value of the failure function
means failure and a positive value provide a safe region. The failure surface is then

g ( R , S ) = R – S = 0

so that g(R,S) ≤ ≤ 0 ≡ ≡ Failure
(1)
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Figure 1: Failure Function of Two Random Variables

In Figure 1 the “Fail” and “Safe” regions for Eq.( 1) are shown. When each of the two
terms of Eq.( 1) is a function of many other structural parameters the failure surface is
not necessarily a linear line like that in Figure 1, but a multi-dimensional surface of all
the random variables.

g(R,S) = g(X1,X 2, ...X k ; Y1, Y2, ...Ym ) = 0 (2)

where X i are the variables influencing R and Y i are the variables influencing S .

Sometimes a variable can influence both R and S . Therefore it is more convenient to
express the failure function as

g(X1 ,X 2 , ...,Xn ) = 0 (3)

where n is the total number of random variables.
It can be shown that the probability of failure is the result of the following integral

(4)

where φ φ is the joint probability density function (JPDF) of the n random variables

X n and the integral is performed over the hyper-space where g is negative. The area

over which integration is done is shown in Figure 2 (for a two-variables problem with
normal distribution).



www.manaraa.com

232

Figure 2: Basic Case, Two Normally Distributed Random Variables

The integral in Eq.(4) can only be solved explicitly in very few cases, and therefore
other methods must be used.

A common practice in the analysis of stochastic structures is the transformation of the
physical random variables vector X into a standard normal vector u. The transformation
is (see [1]):

(5)

where Φ Φ is the standard normal distribution function and F is the cumulative
distribution of the physical random variable Xi . When dependant random variables
exist, the Rosenblatt transformation [7] is used to further transform the variables into
independent standard normal variables. The probability density function (PDF) of a
standard normal space decays exponentially with the square of the distance of this
variable from the origin. In the case of a practical structure, very low probabilities of
failure are allowed, and the integration boundary of the JPDF in Eq.(4) can be replaced
by another, approximated, boundary. In first-order reliability methods (FORM), the
failure function is replaced by a hyper-plane, tangent to the function at the point closest
to the origin. In second-order reliability methods (SORM), the failure function is
replaced by a second-order (quadratic) hyper-surface.
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The point of the transformed limit state function closest to the origin of the u space is
called the most probable point of failure (the MPP, sometimes called “the design
point”), and is denoted u*. The distance from the origin to this point, denoted ββ , is
called the reliability index. When ββ is obtained, the first-order probability of failure
P f  can be calculated by

Pf  = ΦΦ (– ββ ) (6)

Second-order probabilities of failure can be calculated by an extension of Eq.(6)
creating an expression which includes the radii of curvatures of the hyper-space as cited
in [12], [13]. An example of the transformation into a u space can be seen in figure 3.

Most of the non-simulative computational algorithms used today to find the point of
most probable point of failure (the MPP) u* utilize the gradient vector of the
transformed random variable u.

3. Closed-Form Expressions for the Failure Function

In Eq.(1) the load effects term S represents the structural property which is assumed to
be critical in the failure analysis. Assume the simple case of a beam loaded with a
distributed force. Suppose that the failure criterion is defined as: “the beam fails when a
stress higher than the yield stress exists in the beam”. The load effects term S is the
maximum stress in the beam, which depends on its length, cross-section dimensions and
the magnitude of the applied forces. The resistance term R in this case is the yield
stress. Assume that the failure criterion is defined as: “the beam fails when a mid-span
displacement is higher than a given value maxδδ ”. Then the load effect term is the
mid-span displacement, which depends on the beam length, cross-section dimensions,
elastic modulus of the beam material and the applied force. The resistance term is then
the allowed displacement δδmax. In both these cases there is a closed-form expression that
describes the load effect term as a function of the structural parameters (the mechanical
transformation), thus the failure function can be expressed in a closed-form expression.

Combined failure criteria can also be defined. Such a criterion may be, for instance,
“the beam fails when the stress is higher than the yield stress, and the displacement is
higher than the allowed one”. Another criterion may be “the beam fails when the stress
is higher than the yield stress, or the displacement is higher than the allowed one”. The
definition of an appropriate failure criterion is one of the most important aspects of any
design, and must be based on the designer skills and experience and the expected
behavior of the designed system.

Structural analysis of practical structures designed in the industry can seldom be
made by using closed-form expressions. Instead, a numerical algorithm such as a finite
element code is used. When the finite element computation time is very short, Monte
Carlo simulations can be used by running many thousands of finite element
computations. This is a very impractical method when the finite element computation is
long, which is usually the case for practical designs. For these cases, an approximated
closed-form expression can be used for the failure function. This approximation can be
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Figure 3: Transformaion from X space (a) into u space

obtained by solving a relatively small number of deterministic cases, changing slightly
the values of those parameters which are assumed to be random variables. These
solutions are then applied to form an approximate surface (i.e. in [14] and [15]), by
using least mean square techniques. When a second-order surface is required, at least
2n+1 deterministic solutions are required, where n is the total number of the random
variables. The approximated surface will be more accurate when more deterministic
solutions are performed. When an approximate surface (sometimes called “response
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surface”) is computed, it is used as an approximate closed-form expression for the
probabilistic computation. Most of the commercially available probabilistic structural
analysis computer programs include the computation of the approximated response
surface as part of the whole computational process. Thus the user does not have to
compute separately the approximate response surface, but only to list the deterministic
solutions performed earlier by a finite element code.

Another method that was suggested (see [16], is the direct computation of the
structural probabilistic problem using only an existing finite element code. Adopting
this method (called the “modified joint probability density function”) requires some
manipulations of the optimization modules of the finite element program. It enables the
determination of the MPP directly by the finite element code, thus enabling the
computation of the first order probability of failure without any probabilistic analysis
program.

4. Plastic Buckling of Rectangular Plate Under Biaxial Loading

The structural probabilistic analysis is demonstrated on the problem solved
deterministically in [17].

The theory of elastic stability predicts an increase in the buckling load of a simply
supported rectangular plate (of length a , width b and thickness h ), loaded by a
compression force P in the y direction, due to tension ξ ξ · P in the perpendicular

direction (positive ξ ξ means tension). The model is described in Figure 4. The
perpendicular tension has thus a strengthening effect. This effect becomes less effective
when a plastic behavior is accounted for. Thus the plastic behavior of the rectangular
plate under compression/tension is governed by two competing mechanisms, and an
optimization problem can emerge here in one way or another.

Figure 4: Simply Supported Rectangular Plate Under Biaxial Loading (negative ξξ
means compression in the x Direction)
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The problem was solve analytically in [17], and three elasto-plastic solutions were
presented: (a) a general formulation; (b) a general formulation neglecting the elastic
compressibility (v=0.5); (c) a closed form approximation for (b).

Without any loss of generality, the structural probabilistic analysis demonstrated here
is based on the closed form solution. Two kinds of effects are shown: (a) the expected
dispersion in the buckling load due to random material properties; (b) the expected
probability of failure of this structure due to dispersion in both the material properties
and the applied stress P.

The approximated closed-form expression for the buckling stress Pb is (see [17]):

where E is the material elastic Young Modulus, Y is the material linear yield stress, N is
a material parameter, and

Note that according to Eq.(7) the magnitude of the buckling load does not depend on the
ratio b/a . This ratio influences the number of half waves n in the y direction, a
parameter which is not included in the approximate closed form solution of [17] and in
the following probabilistic analysis.

The parameter N describes the plastic behavior of the material stress-strain curve.
This behavior is expressed as

In Figure 5, stress-strain curves are shown for two values of N for a material with
E=700000 kg/cm² and Y=4000 kg/cm².

In Figure 6, results calculated deterministically using Eq.(7) for a plate of h=0.5 cm
are shown.

(7)

(8)

(9)
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Some parametric computations were made to check the influence of the plate thickness
and the parameter N on the behavior of the buckling stress. Naturally, the thicker the
plate, the higher the buckling stress. The maximum values of the buckling stress in these
computations (not shown in this paper) was found to be in the vicinity of ξξ=0. As N
increase (for given values of E and Y ), the drop in the buckling stress with positive ξ
values is enhanced. These results can be concluded intuitively by inspection of the
stress-strain curves shown in Figure 5.

Figure 5: The Influence of N on the Stress-Strain Curve

Figure 6: Buckling Stress vs. ξ for E=700000 kg/cm², Y=4000 kg/cm²
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5 . Stochastic Buckling Stress due to Random Material Properties

The statistical behavior of the buckling stress due to the randomness of the material
properties E, Y and N were computed using (7). The computations were performed
using the probabilistic structural analysis program FPI (Fast Probability Integration),
developed under NASA contract in Southwest Research Institute, in cooperation with
NASA Lewis Research Center and with several industries in the USA. One of the
solution options in this program allows the use of a closed-form expression like (7),
substituting random variables by their probability density functions (PDF), their mean
values and their standard deviations. In Table 1, the distributions, mean values and
standard deviations used for the demonstrated computations are listed.

Table 1: Characteristics of Random Material Properties

Distribution Mean Standard Range from –3σσ to +3σσ

deviation

N normal 3 0.03 2.91 – 3.09

12 0.12 11.64 – 12.36

E normal 700000 16700 649900 - 750100

2100000 50100 1949700 – 2250300

Y normal 4000 70 3790 – 4210

2000 35 1895 – 2105

It should be emphasized that the selection of normal distribution is made only to
demonstrate the stochastic effects. Results can be obtained using many other types of
statistical probability density functions, and may include correlation effects between any
two random variables.

In the following figures, a dispersion range of the buckling stress (computed using
Eq.(7) with the data of Table 1) are shown. The lower line represents a bound below
which lie 0.135% of the buckling stresses. The upper line represents a bound under
which lie 99.865% of the buckling stresses. In the range between these two limiting
lines lie 99.73% of all the expected results. This is equivalent to the normal dispersion
between –3 σσ  and +3 σσ of the normal distribution. Other ranges can also be computed.
In Figure 7, the ranges are shown for E with Emean =700000 kg/cm², Y with Y mean =4000
kg/cm², for two mean values of normal random N , with standard deviations of all
variables given in Table 1. In Figure 8, the ranges are shown for N with Nmean =3, Y
with Ymean = 4000 kg/cm², for two mean values of normal random E , with standard
deviations of all variables also given in Table 1. In Figure 9, the ranges are shown for N
with N mean =3, E with E mean =700000 kg/cm², with the standard deviations of all
variables also given in Table 1.
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Figure 7: Buckling Load Dispersion Due to Dispersion in E and Y, for Two values of N

Figure 8: Buckling Load Dispersion Due to Dispersion in Y and N, for Two values of E
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Figure 9: Buckling Load Dispersion Due to Dispersion in E and N for Two Values of Y

6. Probability of Failure

The probability of failure of a structure can be computed only when loading is also
applied. Therefore a loading stress P, which is also considered a random variable has to
be applied.

The mean value of the load P was determined using deterministic engineering
considerations. A safety factor of 1.1 was selected, so that the calculated deterministic
buckling stress should be 10% higher than the applied load, leaving a deterministic
margin of safety of 10%.
In Table 2, the mean values for the deterministic buckling stresses and the selected
means for the applied stress are shown for two values of N and for two values of ξξ.

Table 2: Deterministic Buckling Stresses and Means for the Applied Stress

N

ξ ξ = 0 ξ = ξ = 2

Pb , kg/cm² P, kg/cm² Pb , kg/cm² P, kg/cm²

3 2970 2700 2350 2135

12 3685 3350 1685 1532
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The resistance term of the generic failure function Eq.(1) is the allowed stress, which is
equal to the buckling stress P b, Eq.(7). The load effect term is the load P , thus the

failure function is

(10)

and the probability of failure Pf  is

Pf = Prob (g ≤ ≤ 0) (11)

The external load P is assumed to be normally distributed, with a mean value given in
Table 2. In order to examine the effect of the dispersion of the external load, different
values of standard deviations were selected, and the influence of the coefficient of
variation (COV = standard deviation divided by the mean value) on the probability of
failure was examined.
In Figure 10, results for the 0.5 cm thick plate, made of material with mean elastic
modulus E=700000 kg/cm², and mean yield stress Y=4000 kg/cm², were calculated for
mean values of N=3 and 12. The standard deviations of these three random variables are
those tabulated in Table 1. All the numerical computations were performed using the
FPI program. Several analysis methods were used, such as FORM, SORM and Monte
Carlo simulations. All methods yield similar results.

It can be seen that when the material properties are stochastic but the loading is

deterministic (COV=0), the probability of failure is 1.10-8 % , or 1.10–10 for N=3. This
probability is increased tremendously when the loading is also stochastic. For

COV=2%, probability of failure is 5.10–3 % or 5.10–5 for N=3. When the dispersion in
the load is increased (i.e. COV=4%) the probability of failure is 1%, or 0.01, etc.
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Figure 10: Effect of COV of the External Load on the Probability of Failure

Using the described computational scheme, the effects of variation in any other
structural parameter (material properties, geometry, dimensions) can be calculated. The
sensitivity of the success or failure of a design to dispersion in any structural variable
can be computed. These sensitivities are of great importance to the designer when a
robust design is required.

7. Concluding Remarks

The purpose of this paper is to demonstrate the concepts of probabilistic structural
analysis. The probabilistic (stochastic) approach enables a designer to check the effects
of uncertainties in the physical design parameters of a structural problem on the
outcome stress (or other results such as displacements, accelerations etc.) for a given
design. Also, probability of failure can be estimated using the described process, instead
of the traditional “Factor-of-Safety” concept.

The stochastic approach was demonstrated on the problem of plastic buckling of
rectangular plates under biaxial loading, whose deterministic solution is given in the
literature. Reasonable statistical dispersions were assumed for Young’s modulus E, the
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linear yield stress Y and the stress-starin curve parameter N. The dispersion in buckling
stress was calculated. Also, the influence of the coefficient of variation of the external
load on the probability of failure was demonstrated. It was shown that the probability of

buckling (failure) of the rectangular plate can vary between a very low value (10–8 %)
to very high value (10%), when the uncertainty in the external load is increased, and the
material’s properties have statistical dispersions.

It is believed that in the near future the use of probabilistic structural analysis will
dominate engineering applications, and will enable more optimal, non-conservative and
robust designs.
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ON USING ROTATIONS AS PRIMARY VARIABLES IN THE NON-LINEAR
THEORY OF THIN IRREGULAR SHELLS

W. PIETRASZKIEWICZ
Polish Academy of Sciences, Institute of Fluid-Flow Machinery
Ul. Gen. J. Fiszera 14, 80-952 Gda sk, Poland

1. Introduction

A non-linear theory of thin shell-like structures with irregularities of geometry, material
properties and deformation along singular curves was developed in Makowski et al.
[1,2]. In these papers an irregular structure was modelled by a reference network being a
union of piecewise smooth surfaces and surface curves resisting only the stretching and
bending. The resulting boundary value problem was expressed through displacement
vector as the only independent field variable.

In the general approach to the non-linear theory of shells presented in the book of
Libai and Simmonds [3] the finite rotation field appears naturally as one of primary
variables of the boundary value problem. This statically and geometrically exact
formulation of shell theory, which grew from early ideas of Reissner [4] and Simmonds
[5], allowed one to develop effective computational procedures based on the finite
element method for both the regular shells [6] and the irregular shell-like structures [7].
The classical thin shell theory was defined in [3] with the help of the Kirchhoff
hypothesis regarded as a constitutive hypothesis and not as a kinematic one. It was
confirmed in [3] that in the classical theory the rotations become expressible through
displacements and are no longer independent field variables. Thus, in order to regard
them again as primary variables some additional constraint conditions with Lagrange
multipliers should be imposed.

The rotation angle as one of primary variables of thin shell theory was first
introduced by Reissner [8] to describe a one-dimensional axisymmetric deformation
state of a thin shell of revolution. Simmonds and Danielson [9,l0] formulated two-
dimensional thin shell relations in terms of the finite rotation and stress function
vectors, and derived an appropriate variational principle. Several alternative forms of
relations for thin shells expressed in terms of rotations were developed by
Pietraszkiewicz [11-14], Shkutin [15], Valid [16,17], Atluri [18], and Libai and
Simmonds [19]. In particular, within the geometrically non-linear theory of thin,
regular, isotropic, elastic shells many such relations were summarised in Chapter 5 of
[14], where references to earlier papers can be found.
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The aim of this report is to extend the results presented in Chapter 5 of [14] in three
directions:

a) In place of the reference surface we introduce the reference network defined in [1,2].

b) In all shell relations large surface strains are admitted. This allows one to discuss

c) The boundary terms for each regular surface element are discussed in more detail,

This allows one, also within the rotational formulation, to take into account various
irregularities of shell geometry, deformation and mechanical properties along
singular curves.

within the same formulation also large strain problems of irregular shells made, for
example, of a rubber-like material with constitutive equations proposed in [3,20].

which allows one to derive an appropriate form of jump conditions at singular curves
and points representing the irregularities.

The deformation of the reference network models entirely the deformation of a thin,
irregular, shell-like structure. The network consists of a finite number of regular surface
elements connected together along singular spatial curves. The equilibrium conditions
of the entire structure are given in Chapter 3 by the postulated principle of virtual work
(PVW) in which the internal surface stress and strain fields are associated only with
stretching and bending of the reference network. Then appropriate constraints with
Lagrange multipliers are introduced into the PVW in order to regard also the rotations
as primary variables. Transforming the so modified PVW we obtain the known, [14],
local forms of equilibrium equations and boundary conditions. We also derive the local
forms of jump conditions at the singular curves (45) and at the singular points (43) and
(46). The jump conditions seem to be new in the literature.

2. Geometry and deformation of a regular surface element

In this report we shall apply primarily the system of notation used in [14] and remind
here only basic relations.

Let be a connected, oriented and regular surface element of class Cn , n ≥ 2,
in the three-dimensional Euclidean point space whose translation (three-dimensional
vector) space is E. The position vector of a point is given by

where O ∈ is a reference origin and θα , α = 1,2, are surface co-ordinates. At
we have the natural base vectors the dual base vectors

(1)

aβ s u c h  t h a t where δ β
α is the Kronecker symbol, the components

of the surface metric tensor a with the

unit normal vector the componentsorienting
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of the surface curvature tensor b, and the components of the surface

permutation tensor such that

The boundary of consists of a finite number of closed, piecewise
smooth curves that do not meet in cusps, each described parametrically by

where s is the arc length along any regular part of . At each

regular point we have the unit tangent vector and the

outward unit normal vector where ( •), v is the external surface

derivative normal to

The deformed, regular surface element with the boundary is

described relative to the same origin O ∈ by the relations

(2)

where θ α and s are convected surface co-ordinates, is the

deformation function, and u∈E is the displacement vector.

In the convected surface co-ordinates all geometric relations at any regular

are now analogous to those given at , and are expressed by

quantities marked by a dash: etc. The dashed

quantities can be expressed through analogous quantities defined on and the
displacement field u with the help of formulae given in [14,21].

Components of the Green type surface deformation measures are defined by

where γ αβ (u) are quadratic polynomials of u, u,α , and are non-rational

(3)

functions of u, u,α , u,αβ .

In the neighbourhood of the regular surface elements and the space

can be parameterised by the normal system of convected co-ordinates where

is the distance from and along n and , respectively. Extending the
domain of χ to the neighbourhood of , the spatial deformation gradient

F : E → E taken at the surface element has the form

(4)
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where ⊗ is the tensor product.

The left polar decomposition of F gives

(5)

Here R ∈ SO (3) is the rotation tensor, V is the left spatial stretch tensor at and

rα are the rotated surface non-holonomic base vectors. These fields satisfy the relations

(6)

The modified surface deformation measures associated with rα are introduced

through the following formulae, [14]:

(7)

Here is the spatial identity tensor. The surface

measures ηαβ and µ αβ  satisfy useful kinematic relations given in [14].

Along the boundary we have

(8)

The transformation of (v , ττ , n ) during deformation into is performed in

two steps: the rotation of (v , ττ , n ) into by the total rotation tensor R τ with the

subsequent extension of into by the factor aτ :

(9)

Kinematic relations involving the tensors R and Rτ are given in [14].
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3. Principle of virtual work for thin irregular shells

A consistent formulation of the mechanical boundary value problem for thin irregular
shell-like structures was developed in Makowski et al. [1,2], where the displacements
were taken as the only independent field variables. The mechanical modelling of such
structures was based on two postulates:

• The deformation of the entire shell-like structure is determined by deformation of a
distinguished surface-like continuum, called the shell reference network.

• The equilibrium conditions of the entire structure are determined by a suitable form
of the principle of virtual work involving only the fields associated with the
stretching and bending of the reference network.

The undeformed reference network introduced in [1] consists of a finite
number of regular surface elements with the following properties:

a)

b) Two or more distinct elements may have a smooth spatial curve Γ(a) as a common
part of the boundaries, which is defined by

No two distinct elements have common interior points.

(10)

c) Two or more distinct curves Γ ( a) may have in common only single isolated points.

Each represents a reference surface of a regular shell part. Each Γ (a) can be a
surface curve across which some fields fai1 to be smooth. Examples of geometric
irregularities along Γ ( a) are surface folds or intersections of two or more regular
surfaces. Shell parts can be made of different materials, or there may be stepwise
thickness changes at Γ ( a) . However, Γ ( a ) can also represent a reference axis of a rod-
like element, a technological junction, a plastic hinge developing during deformation
process, etc.

The network is then regarded as the union of all the closed elements
and the singular curve is regarded as the union of all the

curves Γ (a):

(11)

From (11) it is apparent that The boundary of the entire network
defined by

(12)

consists of a finite number of spatial curves. Several examples of such networks are
given in [2].



www.manaraa.com

250

Deformation of can be described by two deformation functions:

and since the singular curve may be admitted to follow its own
deformation, in general. In many cases the deformation χ may be defined on the entire

, and then χ Γ is a restriction of χ at However, we do not assume such

a restricted shell deformation at the moment.

The principle of virtual work compatible with the two postulates given above can be
taken in the form

(13)

where represents the internal virtual work, is the

external virtual work, and is the additional virtual work of the

generalised forces acting along Γ. Here we have explicitly indicated that all the virtual
works are functionals of the displacements as the only independent field variables. The
individual parts of (13) are defined by

(14)

Here N αβ and M αβ are components of the symmetric stress resultant and stress
couple tensors of the Piola-Kirchhoff type, δ is the symbol of variation, δλαβ and δ καβ

are virtual changes of the surface deformation measures (3), p and h are the external
surface force and moment resultant vectors, N* and H* are the external boundary force
and moment resultant vectors, whereas σ Γ and σ i are the external virtual work
densities along regular parts of Γ and at any singular point Pi , respectively. The∈Γ
explicit forms of σ Γ and  σi depend on the type of irregularity assumed along Γ , [2].
Note that since only the surface components of h and H* can explicitly be
taken into account in the non-linear theory of thin irregular shells discussed here.
Transforming (13) and (14) with the help of Stokes’ theorem, the local equilibrium
equations, boundary conditions and jump conditions at singular curves were derived,
[1, 2].

If the rotation tensor R is supposed to be an independent field variable of the
boundary value problem, some constraint conditions have to be introduced into the
relations (14) and the virtual densities should be expressed in terms of modified surface
deformation and stress measures.
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Let us remind that the components of the surface  deformation

measures are related by (see [14], formula (5.11))

(15)

As a result, the internal surface virtual work density appearing in (14)1 can be presented
in an alternative form

(16)

where now S αβ  = S βα , but H αβ ≠  Hβ α , in general.

In the non-linear theory of thin shells the rotation tensor R is a non-rational function
of u, u,α (explicit formulae are given in [11,13]) . This dependence of R upon u can also
be expressed implicitly through three constraint conditions [22,14]

(17)

These constraints express the known property of the relative surface strain tensor ηη,
which in thin shell theory is symmetric and does not have out-of-surface components.
The property was also confirmed by Libai and Simmonds [3] who used the constitutive
Kirchhoff hypothesis to define the classical theory of thin shells as a special case of the
general shell theory.

For a virtual deformation the relations (17) put the following constraints on the
virtual changes δηαβ of η αβ :

(18)

Inside of each the constraints (18) can be introduced into the surface integral
β . It was shown inof (14)1 with the help of the respective Lagrange multipliers S and Q

work done by the moments h and H* should be expressed directly in terms of now
independent virtual rotations. As a result, (14)1,2 can be modified to the form

with the constraints (18)2 multiplied by B τβ . Additionally, in (14)2  the external virtual

[14] that in order to express also the boundary terms at each
independent rotations it is necessary to introduce a line integral over

explicitly through
into (14) 1
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(19)

where now while other fields are

defined by

(20)

(21)

Here ω  ω  and ωω τ are the virtual rotation vectors in the interior of each and along

each respectively. Please note that all the couple vectors Mβ , M* and m i n

(20) do not have normal components, that is This is the
fundamental property of the theory of thin shells resulting from the two basic postulates
given above.

4. Local field equations

Let us transform the virtual work principle (13) with (19) keeping in mind that both R
and u are now the independent field variables subject to variation.

According to [14], the virtual deformation measures δηαβ αβand δµ
through δu and ωω  by the relations

are expressible

(22)

Introducing (22) into (19)1, the virtual work principle (13) takes the form

(23)

The fields Nβ and Mβ are assumed to be of class C1 in the interior of each regular
surface element and to have extensions of the same class to the boundary with



www.manaraa.com

253

where

finite limits at any Then the Stokes theorem allows one to transform the
first two surface integrals of (23) for each into

(24)

(25)

Along each there may be singular points described by

s = sc , at which the field is not differentiable. Such singular points are, for

example, corners of the closed curves composing or points of singularities of
B , and δ u. At such singular points we assume the existence of finite limits of

defined by

(26)

Then, the last term in the boundary line integral of (24) can be transformed further to
give

(27)

The second term of the boundary line integral in (24) contains the virtual rotation ωω,
which should still be expressed through the virtual rotation  ω ω τ of the boundary. Let us

remind that along each the total rotation tensor Rτ i s  de f ined  a s  t he
superposition of two finite rotations, [14]:

(28)

where

(29)

Therefore, taking variations of Rτ defined either by (9)2 or by (28) 1 we obtain
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(30)

where

(31)

From (30) 1,2 it follows that

(32)

Let us evaluate more explicitly the formula (32)2  for ω ω at the boundary

Keeping in mind that along and taking variation of (28)2

we establish the relations

(33)

Introducing (33) into (31) and taking into account that

(34)

after some transformations from (32)2 we obtain

(35)

The relation (35) means that the virtual rotations ω ω and ωω τ , differ only by their

normal components. But Kv , in (25) does not have a normal component at all. Thus,
using (8)1, (20)1, (25)2 and (35) we are able to show that at the boundary

(36)

The simple relation (36) just confirms that the theory of thin shells discussed here is
insensitive to the virtual works done on the normal, drilling components of ωω, and ωω τ ,
for the corresponding drilling components of the couples are indefinite in this shell
model. The virtual works done by the drilling couples can be taken into account only in
the general theory of shells, [3,6,7].

With the help of (24), (27) and (36) the internal virtual work for the entire reference
network can be put in the form
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In (37) the jumps at each regular point P ∈Γ (a ) of the common curve
for  n ≥ 2 adjacent surface elements are defined by

255

(38)

The numerical superscripts (n) introduced into the right hand sides of (38) indicate
explicitly that those functions are defined only along the particular

The signs in the definitions (38) must be chosen consistently with a fixed orientation
of the curve Γ ( a ) . If the orientation of Γ ( a) coincides with the orientation of
that is when the unit tangent vector ττ Γ specifying the orientation of Γ ( a) is related to

v (n)  of by the minus sign must be chosen in front of the
corresponding term in (38), and the plus sign otherwise.

The jumps at all singular points of have been divided in (37) into the jumps
at the internal points Pi ∈Γ and the jumps at the boundary points

At each internal point Pi  being the common point of m ≥ 2 adjacent
branches Γ ( m) , as well as at each boundary point Pb being the common point of t ≥ 2
adjacent parts and q adjacent branches Γ (q) approaching Pb from inside of
the jumps are defined by

(39)

Here the numerical superscripts indicate that these functions are defined only either on a
particular internal branches Γ (m)  and Γ ( q ), or on a particular composing a part
of boundary

Introducing (37) with (38) and (39) into (23) we obtain
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(40)

For an arbitrary, but kinematically admissible, virtual deformation the fields δu and
ωωτ vanish identically along and the third line of (40) vanishes as well. Then the

virtual work principle (40) requires the following local relations to be satisfied:

the local equilibrium equations

(41)

the static boundary conditions

along regular parts of (42)

the jump conditions

at each singular boundary point (43)

The corresponding work-conjugate  geometric boundary conditions are:

along regular parts of (44)

As it has been expected, the local equilibrium equations (41) as well as the boundary
conditions (42) and (44) for thin irregular shell-like structures coincide with those
derived within the theory of thin, regular shells expressed in terms of displacements and
rotations as the primary variables (see [14], Section 5.2). However, in the jump
conditions (43) the virtual displacements still remain coupled with the generalised
forces, for in case of the general irregularity of deformation we may not be able to
define a common δub associated with a singular boundary point

5. Jump conditions along singular curves

If the local relations (41)-(44) are satisfied, the principle of virtual work still requires
the last line of (40) to be satisfied identically for any part of Γ . This leads to the
following local forms of the jump conditions:

at regular points of Γ; (45)

at each internal singular point Pi ∈Γ. (46)
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The jump conditions (45) and (46) constitute the additional set of basic relations that
should be satisfied at the singular curves representing the irregularities of shell
geometry, deformation, material properties and loading. The conditions are valid for
unrestricted displacements, rotations, strains and/or bendings of the reference  network

The singular curve Γ ( a) embedded into the shell reference network may be of
either geometric or physical type, in general. At the geometric curve some fields in the
relations (45) or (46) fail to be continuous or smooth of the required class. With the
physical curve we can additionally associate some mechanical properties by prescribing
appropriate functions and  along Γ  ( a ) . For

conditions will be discussed separately.

special types of irregularities the jump conditions (45) and (46) can be simplified or
presented in a more explicit, uncoupled form along the lines suggested in [2] for the
displacement formulation of the non-linear theory of thin irregular shells. Such
particular forms of the functions Γ and σ i as well as special cases of the jump
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1. A Review of Plate Theories

1.1 INTRODUCTORY COMMENTS

The primary objective of this section is to review two-dimensional theories
of elastic plates in which both bending and transverse shear effects are taken
into account. The plate theories are derived from the 3-D elasticity theory
by making suitable assumptions concerning the kinematics of deformation or
the stress state through the thickness of the laminate, thereby reducing three-
dimensional elasticity problem to a two dimensional one. There exist a number of
plate theories, and they differ in two principal ways: (1) choice of the field to be
expanded in terms of the thickness coordinate, and (2) the choice of terms (i.e.,
powers of the thickness coordinate) in the expansion. The choice of the field is
often restricted to either displacements or stresses, although a mixed approach is
possible. The choice of terms in the displacement or stress expansions is limited,
at most, to cubic in thickness coordinate. Thus, a component of the stress or
displacement field, ϕ i is expanded in the form

(1.1)

where ϕ i is the i th component of displacement or stress field, (x, y) are the in-
plane coordinates, z the thickness coordinate, t the time, n the number of terms
in the expansion (n-1st degree polynomial in thickness coordinate z), and ϕ j

i
are

functions to be determined. This expansion is used to derive plate theories via an
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appropriate principle of virtual work. Thus, a plate theory can be developed for
any combination of the field variable and number of terms in the expansion of the
variable. The number of theories further multiply if different order expansions are
used for different components of the field.

A brief review of various plate theories is presented in the remainder of this
section. The authors wish to acknowledge that no review of plate theories will be
complete, as there are thousands of papers dealing with one aspect or the other
of the many combinations mentioned above. It should be remarked that it is
not uncommon to find researchers referring to any plate theory that accounts
for transverse shear deformation as a Reissner-Mindlin plate theory. This is
technically incorrect, as there is no such a theory as the ‘Reissner-Mindlin’ plate
theory. The theories that Reissner and Mindlin developed individually are quite
different, as will be shown in the sequel, and they are based on different field
expansions, which were proposed by others.

1.2 CLASSICAL PLATE THEORY

To enable comparison with the refined theories, a brief review of the classical
(or Kirchhoff-Love) plate theory is given here. The governing equations of the
classical plate theory can be derived using either the equilibrium of stress resultants
on a plate element or the assumed displacement field

(1.2)

and the principle of virtual dispalcement. Here (u, v, w ) denote the displacement
components of a point (x, y, z ). The governing equations of the classical plate
theory (C) are given by

(1.3a)

(1.3b)

(1.3c)

where are moments per unit length and are the
transverse shear forces per unit length

(1.4)

where h is the total thickness of the plate, q the  distributed transverse load, and
σ xx , σ xy , and so on are the components of stress in the plate coordinates. The
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three equations (1.3a-c) can be combined into a single equation by eliminating
(which are zero if computed using the constitutive equations)

(1.5)

Suppose that the material of the plate is isotropic and obeys Hooke’s law.
Then the stress-strain relations are given by

(1.6a)

(1.6b)

(1.6c)

where E denotes Young’s modulus, G shear modulus, and v Poisson’s ratio. Using
Eqs. (1.2) and (1.6a-c) in Eq. (1.4) and carrying out the indicated integration
over the plate thickness, we arrive at

(1.7a)

(1.7b)

(1.7c)

where D is the flexural rigidity D = The shear forces are

computed using Eqs. (1.3a,b).

1.3 STRESS-BASED THEORIES

The plate theories based on the expansion of the stress field are due to Reissner
[1,2] and Kromm [3,4], and the book by Panc [5] contains chapters devoted to these
theories and their extensions. In the Reissner plate theory, the distribution of the
stress components through the plate thickness is assumed to be

(1.9a)

(1.9b)

(1.9c)



www.manaraa.com

262

where the load q acts at the surface z = –h/2. The stress field in Eq. (1.9a) is
the same as that of the classical plate theory; the transverse shear stress field in
Eqs. (1.9b,c) is the same as that obtained from 3-D stress-equilibrium equations
after using the in-plane stress field from (1.9a) (see Reddy [6-8]). Thus, the in-
plane stresses are linear, the transverse shear stresses are quadratic, and transverse
normal stress is cubic in z. Obviously, these stress components satisfy both the
stress-equilibrium of equations of 3D elasticity as well as those in Eqs. (1.3a-c).

The transverse displacement w R of Reissner’s theory is a function of ( x, y, z ) ,
and this complicates its determination. To make the theory tractable, Reissner
introduced the thickness-integrated transverse displacement (a ‘mean deflection
with respect to the plate thckness’)

(1.10)

With the introduction of w R , the governing equations of Reissner’s plate theory
for isotropic plates can be written as (see Panc [5] for details)

(1.11a)

(1.11b)

(1.11c)

where of Eqs. (1.11b,c) satisfy Eq. (1.3c).

The moment-deflection relationships of Reissner’s plate theory are

(1.12a)

(1.12b)

(1.12c)

The refined theory of Kromm [3,4] is based on a more general stress
distributions, especially for the transverse shear stress components, across the
thickness of the plate. For a complete description of theory and its governing
equations one may consult Panc [5].

The stress-based theories have not received as much attention as the
displacement-based plate theories. This might be due to the fact that the
stress-based theories are relatively more complicated and inconsistencies between
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the actual (i.e. consistent with the assumed stress distributions) and adopted
displacements exist.

1.4 DISPLACEMENT-BASED THEORIES

The simplest displacement-based plate theory is that uses the displacement
field

(1.13)

where φ F
x and – φF

y denote rotations about the y and x axes, respectively:

(1.14)

The theory is known in the literature as the Mindlin plate theory, although the
use of the displacement field (1.13) and associated plate theory were developed
much earlier by Bassett [9], Hildebrand et al [10], and Hencky [11]. Mindlin [12]
extended the theory developed by Hencky [11] to the vibration of crystal plates.
Hence, it would be incorrect to attribute the theory to Mindlin (or Reissner). The
theory is now being referred to as the first-order shear deformation plate theory
(FSDT, see Reddy [6-8]). Note that the classical plate theory (CPT) is also a
first-order theory but it is not a shear deformation theory.

The governing equations of the FSDT are

(1.15a)

(1.15b)

(1.15c)

Using the stress-strain relations (1.6), we can express the moments and shear fores
in terms of

(1.16a)

(1.16b)

(1.17)

where Ks denotes the shear correction factor.
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The FSDT extends the kinematics of the CPT by including the transverse
shear strains in its kinematic assumptions by removing the normality restriction
of the classical plate theory. Since the transverse shear strains in the FSDT are
constant through the plate thickness, the transverse shear stresses are also constant
through the plate thickness, whereas the the stress equilibrium equations [see Eqs.
(1.9b)] predict them to be quadratic. To make the shear forces (Q x , Qy ) computed
in the FSDT to be equal to those obtained using the transverse shear stresses
from the stress-equilibrium equations, shear correction factors were introduced. In
both CPT and FSDT, the plane-stress state assumption i0s used and plane-stress
reduced form of the constitutive law is used. In both theories the inextensibility
(i.e. ε z z = 0) and/or straightness of transverse normals can be removed. Such
extensions lead to second- and higher-order theories of plates.

Second- and higher-order plate theories¹ use higher-order polynomials [i.e.,
n > 1 in Eq. (1.1)] in the expansion of the displacement components through the
thickness of the plate (see [7] for a additional references). The higher-order theories
introduce additional unknowns that are often difficult to interpret in physical
terms.

A second-order plate theory with transverse inextensibility is based on the
displacement field

(1.18)

where ψ x and ψ y are the curvatures at the midplane (i.e. z = 0) of the plate

(1.19)

The second-order plate theories are not used much as it incorrectly estimates the
in-plane displacements of points (x, y, z ) and (x, y, –z ) to be the same irrespective
whether the plate bends convex or concave.

A third-order plate theory with transverse inextensibility is based on the
displacement field (see Reddy [13,14])

(1.20)

1 The order referred here is to the degree n of the thickness coordinate in the
displacement expansion and not to the order of the governing differential equations.
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The displacement field accommodates quadratic variation of transverse shear
strains (and hence stresses) and vanishing of transverse shear stresses on the top
and bottom surfaces of a plate. Thus there is no need to use shear correction
factors in a third-order plate theory. There are a number of people who have used
a displacement field of the form (1.20), but they differ in actual form (see Table 1)
and hence the resulting governing equations have different looks. However, it can
be shown that all third-order theories are special cases of that derived by Reddy
[13,14,20].

TABLE 1. Relationship of the displacements of other third-order theories
to the one in Eq. (1.20).

References Displacement Field† Correspondence
with Eq. (1.20)‡

Vlasov [15],
Jemielita[l6]

Schmidt [17]

Krishna Murty [18],
Levinson [19],
Reddy [13]

Reddy [14]

Reddy [20]

The equilibrium equations of the third-order plate theory (T), based on the
displacement field (1.18) and the principle of virtual displacements, are

(1.21a)

(1.21b)

(1.21c)

where ( ξ, η = x, y)
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(1.22)

The third-order plate theory of Levinson is based on the same displacement
field as in Eqs. (1.20), but he used the equilibrium equations of the FSDT, i.e., did
not use the principle of virtual displacements to derive the equilibrium equations.
The Levinson theory results in much simpler equations and does not involve the
higher-order stress resultants. The equilibrium equations of Levinson’s theory may
be obtained as a special case from Eqs. (1.21a-c) by setting α and β to zero in
Eqs. (1.21a-c) and (1.22).

In both Reddy’s and Levinson’s theories, the moments and shear forces are
related to the displacements b y

(1.23a)

(1.23b)

(1.23c)

(1.23d)

(1.23e)

(1.21f)

(1.23g)

(1.23h)

It should be noted that the higher-order stress resultants ( Px x , Py y , Px y) and
(Qx , Q y ,) do not arise in Levinson’s theory [19].

The third-order theories provide a slight increase in accuracy relative to the
FSDT solution, at the expense of a significant increase in computational effort. In
principle, it is possible to expand the displacement field in terms of the thickness
coordinate up to any desired degree. However, due to the algebraic complexity and
computational effort involved with higher-order theories in return for marginal gain
in accuracy, theories higher than third order have not been attempted. The reason
for expanding the displacements up to the cubic term in the thickness coordinate
is to have quadratic variation of the transverse shear strains and transverse shear
stresses through each layer. This avoids the need for shear correction factors used
in the first-order theory.
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2 . Relationships Between Theories

2.1 BACKGROUND

Equations governing shear deformation theories of plates are typically more
complicated than those of the classical plate theory. Hence it is desirable to
have exact relationships between solutions of the classical plate theory and shear
deformation plate theories so that whenever classical theory solutions are available,
the corresponding solutions of a shear deformation theory can be readily obtained.
Such relationships not only furnish benchmark solutions of shear deformation
theories but also provide insight into the significance of shear deformation on
the response. The relationships for beams and plates have been developed by the
authors and their colleagues over the last several years, and the developments till
1999 were included in the authors’ book [21]. Recent developments, especially
those related to the Reissner’s and Levinson’s plate theories, are included here
along with a summary of the prior developments.

2.2 DEFLECTION RELATIONSHIPS

2.2.1 First-Order Shear Shear Deformation Plate Theory

Consider the elastic bending problem of an isotropic plate of uniform thickness
h, Poisson’s ratio v , modulus of elasticity E, and shear modulus G. The governing
equations of static equilibrium of plates according to the CPT and FSDT can be
expressed in terms of the deflection w0 and moment sum M as

(2.la, b)

(2.2a, b)

where the superscripts C and F refer to quantities of the CPT and FSDT plates,
respectively, K s the shear correction factor, the moment sum M is defined as

(2.3)

and is the flexural rigidity of the plate. The moment sum is
related to the generalized displacements by the relations

(2.4a)

(2.4b)

From Eqs. (2.1a) and (2.2a), in view of the load equivalence, it follows that

(2 .5)
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where ψ is a function such that
(2.6)

Using this result in Eqs. (2.1b) and (2.2b), we arrive at the relationship

(2.7)

where Ψ is a (biharmonic) function that satisfies the condition

(2.8)

Note that the relationship (2.7) is valid for all plates with arbitrary boundary
conditions and transverse load. One must determine Ψ from Eq. (2.8) subject to
the geometry and boundary conditions of the plate.

In cases where on the boundaries and M C is either zero or equal to
a constant M *C (which can be zero) over the boundaries, Ψ simply takes on the
value of – However, if M C varies over the boundaries, the function
Ψ must be determined separately.

2.2.2 The Third-Order Plate Theory

The governing equations of static equilibrium of plates according to the
Kirchhoff or classical (C) and Levinson (L) plate theories can be expressed in
terms of the moment sum defined in Eq. (2.3). We have

(2.9)

The equilibrium equation of the Levinson plate theory

can be expressed in terms of the moment sum as

(2.10)

(2.11a, b)

From Eqs. (2.1a) and (2.11a), in view of the load equivalence, it follows that

(2.12)

where Φ is a function such that it satisfies the biharmonic equation

(2.13)
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After a series of algebraic manipulations (see Reddy et al [22]), we can establish
the following relationships:

(2.14a)

(2.14b)

(2.14c)

where Ψ(x, y) is a function such that

(2.15)

where
(2.16)

and Ω is defined by

(2.17)

and it is the solution of
(2.18)

A differential (not algebraic) deflection relationship between the CPT and the
third-order shear deformation theory (TSDT) of Reddy for polygonal plates was
developed by Reddy and Wang [23], and it is not included here due to the space
limitation.

2.3 BUCKLING LOAD RELATIONSHIPS

For a simply supported polygonal plate under isotropic inplane load N, the
buckling load N F of FSDT is related to its corresponding CPT buckling load N C

by (see Wang [24])

(2.19)

where G is the shear modulus, K s the shear correction factor, and h the plate
thickness. Wang [25] showed that the above buckling relationship applies to
radially loaded circular plates with any homogeneous edge restraint such as simply
supported, clamped, or simply supported with elastic rotational restraint.

For simply support polygonal plates, the third-order shear deformation
theory (TSDT) the relationship between the bucking loads is given by (see Wang
and Reddy [26])

(2.20)
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It should be remarked that the relationships developed in this section are valid
only for simply supported polygonal plates under uniform inplane forces (i.e., the
same uniform load applied on all sides). For example, the relationships in Eqs.
(2.19) and (2.20) do not hold for a simply supported rectangular plate subjected
to biaxial loads

(2.21)

For this case, a relationship between the Kirchhoff and Mindlin plate can be derived
using the solutions of the Kirchhoff plate theory and the Mindlin plate theory (see

Reddy [8])

where m is the number of half waves in the x–direction, and

Although N F can be expressed in terms of N C as

they do not necessar ily correspond, in general, to the same number of half waves
m. This is because N F (m ) contains an addition al factor involving m. In cases
in which both theories yield the critical buckling load (i.e. the minimum buckling
load) for the
relationship

same h alf wave number m, it is possible to arrive at the following

(2.26)

Note that Eq. -(2.26) is independent of the aspect ratio s and the half-wave number
m. When γ = 1 (i.e. uniform compression), the relationship in Eq. (2.26) reduces
to the one in Eq. (2.19).

For buckling of rectangular plates under uniform inplane shear load, Wang,
Xiang, and Kitipornchai [27] eveloped an approximate relationship in the samed
form as in Eq. (2.19):

(2.27)

where ƒ is a correction factor (see Wang, Reddy, and Lee [21]).

(2.22)

(2.23)

(2.24)

(2.25)
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h–
R

The relationship between the CPT buckling load of a simply supported
polygonal plate and the FSDT buckling load of a simply supported polygonal
sandwich plate is (see Wang [28])

(2.28)

where D c and D f denote the flexural rigidities of the core and face sheets,
respectively, and h c and h f denote the thicknesses of the core and face sheets,
respectively.

Tables 2 and 3 contain numerical results for buckling loads of skew plates
and circular plates. These results were obtained with the help of Eqs. (2.19) and
(2/26). When the skew angle α = 0°, the case corresponds to rectangular plates.
Note that the results for h /b = 0.001 and h /R = 0.001 represent the thin (or
Kirchhoff) plate solutions.

TABLE 2. Critical buckling loads of simply supported,
isotropic (v = 0.3), skew plates (skew angle α from the vertical axis), according
to FSDT ( K s = 5/6).

a– α = 0° α = 15° α = 30° α = 45°b
h–b

1.0 0.001 2.0000 2.1147 2.5240 3.5253
1.0 0.1 1.8932 1.9957 2.3563 3.2066
1.0 0.2 1.6319 1.7074 1.9646 2.5224
2.0 0.001 1.2499 1.3280 1.6098 2.3177
2 0 0.1 1.2074 1.2801 1.5399 2.1755
2.0 0.2 1.0955 1.1550 1.3625 1.8374

TABLE 3. Critical buckling loads of simply supported and
clamped, isotropic (v = 0.3), circular plates of radius R, according to FSDT
( Ks = 5/6).

λs λc

0.001 4.1978 14.6819
0.05 4.1853 14.5296
0.10 4.1480 14.0909
0.15 4.0875 13.4157
0.20 4.0056 12.5725
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2.4 NATURAL FREQUENCY RELATIONSHIPS

The relationship between vibration frequencies of simply supported, polygonal
plates was derived by Wang [29,30]

(2.29)

where N = 1,2,···, corresponds to the mode sequence number, ω the natural
frequency, G the shear modulus,  ρ the density, K s the shear correction factor, and
h the plate thickness.

If the rotary inertia effect is neglected, it can be shown that the frequency
relationship (2.29) simplifies to

(2.30)

where is the frequency of Mindlin (FSDT) plate without the rotary inertia
effect. This frequency value is greater than its corresponding ω F but smaller
than  ωC . Table 4 contains, for example, numerical results for various regular
polygonal shapes with side a. Wang [29] showed that the relationship may also be
used to predict quite accurately the vibration of frequencies of FSDT plates with
simply supported curved edges. Similar relationships were developed for TSDT
by Wang, and his colleagues [31,32].

TABLE 4. Fundamental natural frequencies of simply supported
polygonal plates (K s = 5/6, v = 0.3).

Shape ω C ωF

–a –h = 0.05 h = 0.10 h
a a = 0.15–

Triangle 52.638 51.414 48.279 44.275
Square 19.739 19.562 19.065 18.328
Pentagon 10.863 10.809 10.653 10.410
Hexagon 7.129 7.106 7.037 6.929
Octagon 3.624 3.618 3.600 3.571
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5. Closing Remarks

In this paper, an overview of various shear deformation plate theories and
the exact relationships between the solutions (i.e., deflections, buckling loads,
and natural frequencies) of the classical and shear deformation plate theories
for isotropic and sandwich plates of various shapes and boundary conditions are
presented. The first order shear deformation theory (FSDT) solutions may be
readily obtained from known classical plate theory (CPT) solutions of isotropic
plates. The exact FSDT solutions obtained via these relationships should serve
as useful benchmark values for researchers to check the validity, convergence and
accuracy of their numerical results. The exact relationships also show clearly
the intrinsic features of the effect of transverse shear deformation on the classical
solutions.

Deflection and rotation-slope relationships between the classical and the
Levinson plate theory are also developed. Similar relationships between the
classical and the Reddy plate theory have been developed but not included here
due to the space limitation. These and many other results can be found in the
monograph by the authors (see Wang, Reddy, and Lee [21]).

Relationships between the Reissner and Mindlin (i.e., first-order) plate
theories were also derived recently (see Wang et al. [33]). The deflection
relationship is given by

(2.31)

(2.32)

(2.33)

where Θ (x, y) is a biharmonic function that satisfies the condition

and Λ(x, y) is another function that satisfies the Laplace equation

For a simply supported rectangular plate, these functions can be shown to be zero,
and the relationship (2.31) becomes

(2.34)

which clearly shows that the deflections predicted by the two theories are different.
For simply supported polygonal plates, we have M F = M C and the deflection
relationship in Eq. (2.7) becomes (because Ψ = 0)

(2.35)
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Consequently, we have

(2.36)

Extension of the present approach to determine relationships for orthotropic
and laminated composite plates, for shells, and for transient problems awaits
attention. In addition, the use of the relationships to construct finite element
models of the FSDT using those of the CPT is a challenging task but proves to
be very useful (see Reddy and his colleagues [34,35]).
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1 . Introduction

Cosserat theories of shells, rods and points are continuum theories which model the
response of three-dimensional structures that have special geometrical properties.
Specifically, the Cosserat theory of shells (Naghdi, 1972) models the response of a shell-
like structure that is “thin” in one of its dimensions called the thickness; the Cosserat
theory of rods (Green et al., 1974a,b) models a rod-like structure that is “thin” in two of
its dimensions characterizing its cross-section; and the theory of a Cosserat point (Rubin,
1985a,b) models a structure that is “thin” in all three of its dimensions. These Cosserat
theories are simpler than the three-dimensional theory, which introduces partial
differential equations that depend on three spatial coordinates and time because: for shell
theory the equations depend on only two spatial coordinates and time; for rod theory the
equations depend on only one spatial coordinate and time; and for the theory of a Cosserat
point the equations are ordinary differential equations that depend only on time. The
utility of theories of shells and rods is well known, and the theory of a Cosserat point has
been shown to be a continuum model of a finite element that can be used to formulate the
numerical solution of problems in continuum mechanics (Rubin, 1987, 1995).

From a theoretical point of view it is most clear to develop these Cosserat theories by
the direct approach which proposes balance laws representing: conservation of mass,
balance of linear momentum, balances of director momentum and balance of angular
momentum. Moreover, within the context of the purely mechanical theory an expression
for the rate of material dissipation can be introduced to place restrictions on constitutive
equations. This direct approach to the development of these Cosserat theories is similar to
the development of three-dimensional continuum mechanics in the sense that the balance
laws are valid for arbitrary constitutive equations and the theories are properly invariant
under superposed rigid body motions. Furthermore, for structures made from elastic
materials, the constitutive equations are hyperelastic in the sense that the response
functions are determined by derivatives of a strain energy function.

The objective of the present paper is to present a simple derivation of these Cosserat
theories. This is most easily accomplished by deriving the local forms of the balance laws

277

D. Durban et al. (eds.), Advances in the Mechanics of Plates and Shells, 277–294.
© 2001 Kluwer Academic Publishers. Printed in the Netherlands.



www.manaraa.com

278

of the Cosserat theories starting with the local form of the balance of linear momentum in
the three-dimensional theory, introducing a kinematic approximation for the three-
dimensional position vector and then integrating the resulting equations over appropriate
spatial domains. This procedure is very similar to the Galerkin method that is used to
obtain approximate solutions of the three-dimensional equations. However, the Galerkin
method determines the response functions by integrating the three-dimensional
constitutive equations which employ the kinematic approximation pointwise in the three-
dimensional region. In contrast, the Cosserat approach determines the constitutive
equations and the form of the strain energy function by comparison with special exact
three-dimensional solutions and/or experimental data. This procedure of postulating a
form for the strain energy function to determine constitutive equations is similar to that
advocated by Libai and Simmonds (1998, p.3).

In order to emphasize parallels with the three-dimensional theory a new notation is
introduced for variables in these Cosserat theories. Specifically, quantities related to the
three-dimensional theory are denoted using a superposed star ( *) and similar quantities
related to the Cosserat theory are denoted by the same symbol without a superposed star.
Thus, for example, the position vector associated with the three-dimensional theory is
denoted by x * , and the vector x is used to denote the position vector locating: the
reference surface of the Cosserat shell; the reference curve of the Cosserat rod; and the
reference point of the theory of a Cosserat point.

An outline of the paper is as follows. Section 2 reviews a convenient form of the
three-dimensional equations in terms of convected Lagrangian coordinates, section 3
presents an averaged form of the balance of linear momentum which is used to develop
the balances of director momentum equations in the Cosserat theory. Section 4 compares
the development from the three-dimensional theory with the direct approach. Sections 5,
6 and 7 present the equations of motion of the theories of Cosserat shells, rods and
points, respectively. These sections have been written to be independent of each other so
that the reader can pass from section 4 to either of the sections 5, 6 or 7 without breaking
continuity of the development. Appendices A, B and C present definitions that are
relevant to the Cosserat theories of shells, rods and points, respectively.

Throughout the text, bold faced symbols are used to denote vector and tensor
quantities. Also, I denotes the unity tensor; tr(A ) denotes the trace of the second order
tensor A; AT denotes the transpose of A; A-1 denotes the inverse of A; and A-T denotes
the inverse of the transpose of A . The scalar a • b denotes the dot product between two
vectors a,b; the scalar A • B=tr( ABT) denotes the dot product between two second order
tensors A,B; the vector a × b denotes the cross product between a and b; and the second
order tensor a ⊗b denotes the tensor product between a and b. Moreover, the usual
summation convention over repeated lower cased indices is implied with the range of
Latin indices being (1,2,3) and the range of Greek indices being (1,2).

2. Balance laws in the three-dimensional theory

The motion of a simple continuum is characterized by a nonsingular mapping from an
arbitrary fixed reference configuration to the present configuration at time t. Specifically,
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the vector X * denotes the location of a material point in the reference configuration, x*

denotes the location of the same material point in the present configuration and the
mapping is given by

(2.1)
Moreover, the absolute velocity v* of the material point becomes

where a superposed dot denotes material time differentiation holding the material point X*

fixed. Also, the deformation gradient F *, the velocity gradient L *, the rate of
deformation tensor D* and the spin tensor W* are characterized by the equations

(2.2)

(2.3)

It is well known that the global forms of the conservation of mass and the balance law
of linear momentum of a simple continuum can be expressed as

(2.4)

(2.5)

and the balance of angular momentum is given by

(2.6)

In these equations: P * denotes an arbitrary smooth material region with boundary P*;
da * and dv* denote, respectively, the element of area and element of volume in the present
configuration; *(x*,t) denotes the mass density (mass per unit present volume); b* (x* , t )
denotes the specific (per unit mass) external body force; and t*(x *,t; n * ) denotes the
stress vector (force per unit present area) acting at the point x* on the surface whose unit
outward normal is n*. Moreover, it can be shown that t* is a linear function of n* given
by

where the Cauchy stress tensor T* is explicitly independent of the normal n*. Also, for
the purely mechanical theory, it is possible to define the rate of dissipation * in terms of
the strain energy function * such that

(2.7)

where
*

represents the total rate of external work applied to the body, * represents
the total kinetic energy and

*
represents the total strain energy.

Using the usual continuity assumptions it can be shown that the local forms of (2.4)
become

(2.8)
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where div* denotes the divergence operator with respect to the present position x*. Also,
with the help of (2.8), the reduced form of the balance of angular momentum (2.5)
requires the Cauchy stress to be symmetric

(2.9)
and the local form of the dissipation inequality (2.7)1 reduces to

(2.10)
which must be valid for all motions.

In the following developments it is convenient to express tensor quantities in terms of a
set of convected Lagrangian coordinates θi (i=1,2,3)

,

In these equations, a comma denotes partial differentiation with respect to θ, δi
i
j is the

Kronecker delta symbol, and g 1/2 is related to the element of volume dv* by the
expression

(2.13)
It then follows that similar quantities related to the reference configuration are defined by

(2.14)

Moreover, using these definitions it can be shown that the deformation gradient, the
velocity gradient and the divergence operator can be expressed in the alternative forms

(2.11)
and to define the covariant and contravariant base vectors, respectively, by gi and g i

such that

(2.12)

(2.15)

Also, with the help of the result
(2.16)

it follows that
(2.17)

where the stress tensor has been expressed in terms of the three vectors t*j, such that
(2.18)

Next, introducing the scaled mass density m*and the reference value ρ* of ρ by the0
equation

(2.19)

the local forms of the conservation of mass and the balance of linear momentum can be
written in the alternative forms (see Green and Adkins, 1960; Green and Zerna, 1968)

(2.20)

It will be shown in the following sections that the conservation of mass and the balances
of linear and angular momentum of the Cosserat theories of shells, rods and points can be
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written in forms that are very similar to equations (2.19), (2.20) and (2.9). Moreover, by
using the definitions of the vectors t*i

, the effect of the divergence operator has been
simplified to mere partial differentiation. This has advantages in handling the complicated
geometry of shells and space rods where it is convenient to use curvilinear coordinates
instead of rectangular Cartesian coordinates.

For a purely elastic material it is well known that the stress T* and the strain energy Σ*

are functions of the deformation gradient F* only and are explicitly independent of time.
Also, due to invariance under superposed rigid body motions, Σ* depends on F * only
through the right Cauchy-Green deformation tensor C*, such that

(2.2 1)
Moreover, for a purely elastic material the rate of dissipation * vanishes and (2.10) can
be used to prove that T* is restricted so that

(2.22)

Once a form for the strain energy function Σ*is specified, the constitutive equation for
stress T * is determined by (2.22). Then, the equation of linear momentum (2.20)2
represents a vector equation for the unknown kinematic quantity x* , which is a function
of three spatial coordinates θi and time. Furthermore, a complete formulation of a
problem requires specification of appropriate initial conditions and boundary conditions.

3 . An averaged form of the balance of linear momentum

In the purely mechanical three-dimensional theory, the balance of angular momentum
places restrictions on the constitutive equations which require the Cauchy stress tensor to
be symmetric (2.9). Also, the conservation of mass and the balance of linear momentum
are used to determine the mass density and the position of each material point in the
continuum. For the Cosserat theories that will be developed in the next sections,
equations representing the conservation of mass and the balances of linear and angular
momentum will be used in a similar manner to determine the mass density and the
position of each material point. However, the Cosserat theories introduce additional
kinematical quantities called director vectors at each material point which also need to be
determined by additional balance laws. In order to motivate the forms for these balance
laws it is convenient to consider an averaged form of the balance of linear momentum.

To this end, let φ (θ i ) be a general weighting function that depends on the convected
coordinates θi only and is independent of time so that

(3.1)
Now, multiplying the local form (2.20)2 of linear momentum by φ it follows that

(3.2)

Moreover, with the help of the expression (2.15)3 for the divergence operator and the
formula (2.6) for the stress vector, it can be shown that integration of (3.2) over the
region P* yields the global averaged form the balance of linear momentum
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(3.3)

Specifically, it is noted that, relative to the balance law (2.4)2 , equation (3.3) contains an
extra term on the right hand side of the equation which characterizes the integrated average
of the effect of the stresses t*j . Also, it is noted that for φ=1 this equation reduces to the
balance of linear momentum (2.4)2.

4. Development from the three-dimensional theory and the direct approach

The balance laws for Cosserat theories of shells, rods and points can be developed by
integration using the three-dimensional theory.
the position vector x* is introduced of the form

Specifically, a kinematic assumption for

(4.1)

where x is the position vector, d are called director vectors, and φj are functions of θi
j

only. Depending on the theory being developed, the vectors x and di depend on time and
two spatial coordinates (shell theory), one spatial coordinate (rod theory) or no spatial
coordinates (point theory).

Next, by substituting this kinematic assumption into (2.4)1 and (3.3) it is possible to
derive the global forms of: the conservation of mass; the balance of linear momentum; and
the balances of director momentum associated with the Cosserat theory. Moreover,
interpreting the constant 1 and φj in (4.1) as shape functions and taking the weighting
functions φ in (3.3) to be the same as these shape functions, it is possible to identify this
development as a standard Galerkin procedure for obtaining an approximate solution of
the partial differential equations (2.8). In this regard, it is important to emphasize that
within the context of the Galerkin procedure, the three-dimensional constitutive equations
and the kinematic assumption are assumed to be valid pointwise in the region occupied by
the body. Consequently, the stiffness matrix of the resulting system of ordinary
differential equations is uniquely determined for a given set of shape functions and
weighting functions. In other words, the constitutive equations of the resultant forces and
moments of the approximate equations are uniquely determined by the Galerkin method
[e.g. in the appendices see equations (A2) for shells, (B2) for rods, and (C2) for points].

When nonlinear inhomogeneous deformations are considered it is often impossible to
analytically integrate the expressions characterizing these resultant forces and moments.
Consequently, approximate methods of integration are usually employed. However, even
when the three-dimensional material is hyperelastic, with the stress being obtained by the
derivative of a strain energy function (2.22), there is no guarantee that the resultant forces
and moments obtained using this Galerkin procedure will satisfy integrability conditions
needed to ensure that a strain energy function exists for the approximate equations. Also,
there is no guarantee that the global form of the balance of angular momentum will be
satisfied exactly.

In contrast, the Cosserat approach uses the kinematic assumption (4.1) merely to
motivate the theoretical structure of the balance laws. Specifically, the Cosserat approach
abandons the notion that the three-dimensional constitutive equations and the kinematic
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assumption are valid pointwise in the region occupied by the body. Instead, constitutive
equations for the resultant forces and director couples (moments) are obtained by
demanding that they satisfy restrictions which ensure that the global forms of the balance
of angular momentum (2.5) and the dissipation inequality (2.7)1 are satisfied for all
possible motions. This procedure is identical to that associated with the three-dimensional
theory and it ensures that for elastic response the resultant forces and director couples are
related to derivatives of a strain energy function. Consequently, the Cosserat theory
automatically preserves the fundamental properties of the three-dimensional theory (global
conservation of mass and balances of linear momentum and angular momentum; the
existence of a strain energy function; and invariance under superposed rigid body
motions). Furthermore, specific forms for the strain energy function are obtained by
comparison with exact solutions of the three-dimensional equations and/or with
experimental data.

Development of the balance laws of the Cosserat theory using the kinematic
assumption (4.1) and integration of the three-dimensional balance of linear momentum
has the advantage that the procedure is straight forward and the starting point is known.
However, this procedure does not expose the full potential of the Cosserat approach. In
this regard, the Cosserat theory can be developed by a direct approach (see: Naghdi, 1972
for shells; Green, et al, 1974b for rods; and Rubin, 1985a for points) which proposes a
continuum theory that often is considered to be independent of the full three-dimensional
theory. Within the context of the direct approach, the kinematics of the continuum are
characterized by the position vector x and the directors d . The balance laws include: thei
conservation of mass and the balances of linear momentum, director momentum and
angular momentum. Also, the dissipation inequality is proposed to place additional
restrictions on the constitutive equations for the kinetic quantities like resultant forces and
director couples. In this regard, the direct approach parallels the three-dimensional theory
in that the balance laws are postulated and are presumed to be valid for all materials
(solids, fluids, etc.).

As continuum theories, the Cosserat theories of shells, rods and points, which are
developed by the direct approach, can remain exact nonlinear theories if no further
approximations are made. However, in comparison with the three-dimensional theory
these Cosserat theories represent simpler approximate models for the response of shell-
like, rod-like and point-like structures.

Although the direct approach to Cosserat theories has the advantages described above,
the following sections will develop balance laws by integration of the three-dimensional
equations. However, the constitutive equations will be developed using the dissipation
inequality instead of integration of the three-dimensional constitutive equations as is done
for the Galerkin approximation.

5. Cosserat shells

A Cosserat shell is a continuum model for the response of a three-dimensional structure
that is shell-like in the sense that it is “thin” in one of its dimensions. This structure is
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essentially a curved surface with some small thickness. Material points in the shell’s
stress-free reference configuration are located by the position vector X*

(5.1)

where θ α (α =1,2) are convected coordinates that characterize material points on the
reference surface X of the shell and θ 3 is a convected coordinate that characterizes
material points in the thickness of the shell. Moreover, the director vector D3 is restricted
so that it is linearly independent of the tangent vectors Dα to this reference surface

(5.2)

For simplicity, the reference surface X is taken to be the middle surface of the shell
[X=X *(θα ,0)] and the lateral surface of the shell is characterized by

(5.3)

where f(θ α ) characterizes a smooth closed curve and H(θ α ) is the variable thickness of
the shell. This thickness is limited by the condition that the representation (5.1) provides
a one-to-one invertible mapping between θi and X *, which requires

(5.4)

where use has been made of the definitions (2.14).
In the present deformed configuration, the material points of the shell are assumed to

be located by a position vector x* which has a representation similar to (5.1)
(5.5)

with the reference surface X and director D
3

being mapped to their present values x and
d3, respectively. Again, the director vector d 3 is restricted so that it is linearly
independent of the tangent vectors dα to the present location x of the reference surface

(5.6)

Also, the representation (5.5) remains invertible provided that

(5.7)

where use has been made of the definitions (2.12).
For elastic shells, the director d 3 can be identified with the material line element

through the thickness which in the reference configuration was oriented in the direction
D

3
. It then follows that the representation (5.5) is only approximate for general

deformations of the shell-like structure since it tacitly assumes that this material fiber
remains straight. However, this approximation is reasonably accurate for a wide range of
practical shell-like structures.

Within the context of the direct approach to Cosserat shell theory, the shell is modeled
as a surface which is characterized by the position vector x(θ α ,t). This surface is
endowed with an additional director vector d (θα,t) which provides limited information3
about deformation through the thickness of the shell-like body. Specifically, the
kinematics of the shell are specified by the vectors

(5.8)

where a superposed dot denotes material time differentiation holding θα fixed and the
restriction (5.6)2 is imposed on d3 . Moreover, it is noted that d 3 is a general vector which
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models the effects of transverse shear deformation and normal extension. Here, local
forms of the balance laws are obtained by direct integration of the local equations (2.20)
and (3.2). Specifically, with the help of the representation (5.5) and integration over the
thickness of the shell: (2.20)1 yields the conservation of mass; (2.20) 2 yields the balance
of linear momentum; and (3.2) with φ=θ3, yields the balance of director momentum
which, respectively, are given by

(5.9)

In these equations: the scaled mass density m is related to the mass density ρ (mass per
unit present area ds of the surface x) and its reference value ρ0 through the equations

y 3  and y 33 are director inertia coefficients, which are independent of time

(5.10)

(5.11)
b is the specific external force; b3 is the specific external director couple; tα are related to
the resultant contact forces applied to the boundary of the shell; mα are related to the
resultant contact couples applied to the boundary of the shell; and t3 is the intrinsic
director couple. Moreover, the assigned fields {b, b3 } include contributions {b b , b b

3}
due to the three-dimensional body force and contributions { b } due to contact forcesc , b c

3

on the major surfaces (θ 3=±H/2) of the shell

(5.12)

Expressions for these quantities in terms of related three-dimensional quantities are
recorded in appendix A. Also, use of (2.9) and (5.5), and integration of (2.18)1 yields
the local form of the balance of angular momentum

(5.13)

Next, the rate of dissipation is defined in terms of the strain energy function Σ by
the expression

where the first term in square brackets on the right-hand side represents the rate of work
of all external forces and couples applied to the shell and the second term in square
brackets on the right-hand side represents the kinetic energy of the shell. Now, with the
help of the equations of motion (5.9) it can be shown that

(5.14)

(5.15)

Moreover, it is convenient to introduce the deformation tensor F, the inhomogeneous
strain measures ββα , and the rate of deformation tensors L, D and W, by the equations
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where the reciprocal vectors D i  and d i are defined by equations similar to (2.12) and
(2.14), such that

(5.17)

Then, with the help of (5.10), (5.13), (5.14) and (5.16) it can be shown that the rate of
dissipation (5.15) can be written in alternative form

(5.18)

For a purely elastic shell the tensors T and m α and the strain energy Σ are functions of
the deformation quantities F and ββα only and are explicitly independent of time. Also,
due to invariance under superposed rigid body motions, Σ depends on F only through the
deformation tensor C, such that

(5.19)

Moreover, for a purely elastic shell the rate of dissipation D vanishes and (5.18) can be
used to prove that T and m α are restricted so that

(5.20)

Additional restrictions on the functional form for Σ can be imposed to ensure that the
Cosserat theory produces solutions which are consistent with exact solutions of the three-
dimensional theory of a homogeneous material for all three dimensionally homogeneous
deformations for which F*=F(t) is independent of position and βα =0 vanish (Naghdi and
Rubin, 1995).

Once a form for the strain energy function Σ is specified, the constitutive equations for
T and m α are determined by (5.20), and the constitutive equations for t i  are determined
using the definition (5.14)

(5.21)

In addition, it is necessary to specify the inertia quantities {m, y3, y 33 } and the assigned
fields {b, b 3 }. Then, the equations of linear momentum (5.9)2 and director momentum
(5.9)3 represent two vector equations for the two unknown kinematic quantities { x, d3} ,
which are functions of only two spatial coordinates θα

and time. Furthermore, a complete
formulation of a problem requires specification of appropriate initial conditions and
boundary conditions.

6. Cosserat rods

A Cosserat rod is a continuum model for the response of a three-dimensional structure
that is rod-like in the sense that it is "thin" in two of its dimensions. This structure is
essentially a space curve with some small thickness. Material points in the rod’s stress-
free reference configuration are located by the position vector X*

(6.1)
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where θ 3 iS a convected coordinate that characterizes material points on the reference
curve X of the rod and θ α are convected coordinates that characterize material points in
the cross-section of the rod. Moreover, the director vectors Dα are restricted so that they
are linearly independent of the tangent vector D3 to this reference curve

(6.2)

For simplicity, the reference curve X is specified by [X=X* (0,θ3)] and the cross-
section is taken to be rectangular such that the lateral surface of the rod is characterized by

(6.3)

where H( θ3 ) is the variable thickness, W(θ3 ) is the variable width of the cross-section
and L is the length of the reference curve. The thickness and width are limited by the
condition that the representation (6.1) provides a one-to-one invertible mapping between
θi and X* , which requires

(6.4)

where use has been made of the definitions (2.14).
In the present deformed configuration, the material points of the rod are assumed to be

located by a position vector x * which has a representation similar to (6.1)
(6.5)

with the reference curve X and directors Dα being mapped to their present values x and
d α, respectively. Again, the director vectors d α are restricted so that they are linearly
independent of the tangent vector d3 to the present location x of the reference curve

(6.6)

Also, the representation (6.5) remains invertible provided that
(6.7)

where use has been made of the definitions (2.12).
For elastic rods, the directors d α can be identified with material line elements in the

cross-section which in the reference configuration were oriented in the directions Dα . It
then follows that the representation (6.5) is only approximate for general deformations of
the rod-like structure since it tacitly assumes that these material fibers remains straight.
However, this approximation is reasonably accurate for a wide range of practical rod-like
structures.

Within the context of the direct approach to Cosserat rod theory, the rod is modeled as
a space curve which is characterized by the position vector x(θ 3,t). This curve is
endowed with additional director vectors dα (θ3 ,t) which provide limited information
about deformation through the cross-section of the rod-like body. Specifically, the
kinematics of the rod are specified by the vectors

(6.8)

where a superposed dot denotes material time differentiation holding θ3 fixed and the
restriction (6.6)2 is imposed on d α . Moreover, it is noted that d α are general vectors
which model the effects of tangential shear deformation, normal cross-sectional extension
and normal cross-sectional shear deformation (see Naghdi and Rubin, 1984). Here, local
forms of the balance laws are obtained by direct integration of the local equations (2.20)
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and (3.2). Specifically, with the help of the representation (6.5) and integration over the
cross-section of the rod: (2.20) 1 yields the conservation of mass; (2.20) 2 yields the
balance of linear momentum; and (3.2) with φ=(θ¹ or θθ²), yields the balances of director
momentum which, respectively, are given by

(6.9)
In these equations: the scaled mass density m is related to the mass density ρ (mass per
unit present arclength ds of the curve x) and its reference value ρ0 through the equations

(6.10)

y α and yαβ =y βα are director inertia coefficients, which are independent of time

(6.11)

the resultant contact force applied to the ends of the rod; mα are related to the resultant
contact couples applied to the ends of the rod; and tα are the intrinsic director couples.
Moreover, the assigned fields {b , b α} include contributions {bb , b b

α
} due to the three-

dimensional body force and contributions {b c, b c
α } due to contact forces on the lateral

surface (6.3) of the rod
(6.12)

Expressions for these quantities in terms of related three-dimensional quantities are
recorded in appendix B. Also, use of (2.9) and (6.5), and integration of (2.18)1  yields
the local form of the balance of angular momentum

(6.13)

Next, the rate of dissipation D is defined in terms of the strain energy function Σ by
the expression

(6.14)

where the first term in square brackets on the right-hand side represents the rate of work
of all external forces and couples applied to the rod and the second term in square brackets
on the right-hand side represents the kinetic energy of the rod. Now, with the help of the
equations of motion (6.9) it can be shown that

(6.15)

Moreover, it is convenient to introduce the deformation tensor F, the inhomogeneous
strain measures β α, and the rate of deformation tensors L, D and W , by the equations

(6.16)

where the reciprocal vectors D i  and d i  are defined by equations similar to (2.12) and
(2.14), such that

b is the specific external force; bα are the specific external director couples; t³ is related to
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(6.17)

Then, with the help of (6.10), (6.13), (6.14) and (6.16) it can be shown that the rate of
dissipation (6.15) can be written in alternative form

(6.18)

For a purely elastic rod the tensors T and mα and the strain energy Σ are functions of
the deformation quantities F and β α only and are explicitly independent of time. Also,
due to invariance under superposed rigid body motions, Σ depends on F only through the
deformation tensor C, such that

(6.19)

Moreover, for a purely elastic rod the rate of dissipation D vanishes and (6.18) can be
used to prove that T and mα  are restricted so that

(6.20)

Additional restrictions on the functional form for Σ can be imposed to ensure that the
Cosserat theory produces solutions which are consistent with exact solutions of the three-
dimensional theory of a homogeneous material for all three dimensionally homogeneous
deformations for which F* =F(t) is independent of position and βα =0 vanish (Rubin,
1996).

Once a form for the strain energy function Σ is specified, the constitutive equations for
T and m α  are determined by (6.20), and the constitutive equations for ti  are determined
using the definition (6.14)

(6.21)

In addition, it is necessary to specify the inertia quantities {m, yα , y α β } and the assigned
fields {b, b α}. Then, the equations of linear momentum (6.9)2  and director momentum
(6.9)3 represent three vector equations for the three unknown kinematic quantities
{x, d α}, which are functions of only one spatial coordinate θ³ and time. Furthermore, a
complete formulation of a problem requires specification of appropriate initial conditions
and boundary conditions.

7. Cosserat points

A Cosserat point is a continuum model for the response of a three-dimensional structure
that is point-like in the sense that it is “thin” in three of its dimensions. This structure is
essentially a point with some small thickness so it is like a finite element. Material points
in this structure’s stress-free reference configuration are located by the position vector X*

(7.1)

where X is a constant vector which locates the reference point of the Cosserat point and
θ i are convected coordinates that characterize material points in the three-dimensional
region P * (bounded by ∂P*) occupied by the Cosserat point. Moreover, the director
vectors D i are constant vectors that are restricted to be linearly independent
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(7.2)

Next, using the definitions (2.14) it follows that (7.1) provides a one-to-one invertible
mapping between θi and X *  since

(7.3)

In the present deformed configuration, the material points of the Cosserat point are
assumed to be located by a position vector x* which has a representation similar to (7.1)

(7.4)

with the reference point X and directors D  being mapped to their present values x and d ,
i i

respectively. Again, the director vectors d  are restricted so that they are linearlyi

independent

(7.5)

Also, the representation (7.4) automatically remains invertible since

(7.6)

For elastic Cosserat points, the directors di can be identified with material line elements
which in the reference configuration were oriented in the directions D i. It then follows
that the representation (7.4) is only approximate for general deformations of the point-like
structure since it tacitly assumes that these material fibers remains straight. However, this
approximation is reasonably accurate when the region occupied by the Cosserat point is
small enough that the deformation can be approximated as being nearly homogeneous.

Within the context of the direct approach to the theory of a Cosserat point, the Cosserat
point is modeled as a point in space which is characterized by the position vector x(t).
This point is endowed with additional director vectors d i (t) which provide limited
information about deformation in the region occupied by of the point-like body.
Specifically, the kinematics of the Cosserat point are specified by the vectors

(7.7)

where a superposed dot denotes material time differentiation (which is indistinguishable
from ordinary time differentiation since all quantities in the theory are functions of time
only) and the restriction (7.5) is imposed on d i . Moreover, it is noted that d i  are general
vectors which model the effects of general homogeneous deformations of the Cosserat
point. Here, local forms of the balance laws are obtained by direct integration of the local
equations (2.20) and (3.2). Specifically, with the help of the representation (7.4) and
integration over the region P*: (2.20)1  yields the conservation of mass; (2.20)2 yields the
balance of linear momentum; and (3.2) with φ =(θ ¹ or θ ² or θ³), yields the balances of
director momentum which, respectively, are given by

(7.8)

In these equations: the scaled mass density m is related to the mass density ρ (mass per
unit present volume dv*) and its reference value ρ  through the equations

0

(7.9)

yi and yi j =y j i  are director inertia coefficients, which are independent of time

(7.10)
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b is the specific external force; bi are the specific external director couples; and t i  are the
intrinsic director couples. Moreover, the assigned fields { b, b i } include contributions
{ b , b i

b } due to the three-dimensional body force and contributions {bb c , b
i
c } due to

contact forces on the boundary ∂P * of the Cosserat point
(7.11)

Expressions for these quantities in terms of related three-dimensional quantities are
recorded in appendix C. Also, use of (2.9) and (7.4), and integration of (2.18)1  yields
the reduced form of the balance of angular momentum

(7.12)

Next, the rate of dissipation D is defined in terms of the strain energy function Σ by
the expression

(7.13)

where the first term in square brackets on the right-hand side represents the rate of work
of all external forces and couples applied to the Cosserat point and the second term in
square brackets on the right-hand side represents the kinetic energy of the Cosserat point.
Now, with the help of the equations of motion (7.8) it can be shown that

(7.14)

Moreover, it is convenient to introduce the deformation tensor F , and the rate of
deformation tensors L , D and W , by the equations

(7.15)

where the reciprocal vectors Di and d i  are defined by equations similar to (2.12) and
(2.14), such that

(7.16)

Then, with the help of (7.9), (7.12), (7.13) and (7.15) it can be shown that the rate of
dissipation (7.14) can be written in alternative form

(7.17)

For a purely elastic Cosserat point the tensor T and the strain energy Σ are functions of
the deformation quantity F only and are explicitly independent of time. Also, due to
invariance under superposed rigid body motions, Σ depends on F only through the
deformation tensor C, such that

(7.18)

Moreover, for a purely elastic Cosserat point the rate of dissipation D vanishes and (7.17)
can be used to prove that T is restricted so that

(7.19)

When the functional form for the strain energy is the same as that for the three-
dimensional material then it can be shown that the Cosserat theory produces
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solutions which are consistent with exact solutions of the three-dimensional theory of a
homogeneous material for all three dimensionally homogeneous deformations for which
F* =F(t) is independent of position.

Once a form for the strain energy function Σ is specified, the constitutive equations for
T is determined by (7.19), and the constitutive equations for ti  are determined using the
definition (7.13)

(7.20)
In addition, it is necessary to specify the inertia quantities {m, yi, y i j } and the assigned
fields { b, b i }. Then, the equations of linear momentum (7.8)2  and director momentum

Furthermore, a complete formulation of a problem requires specification of appropriate
initial conditions.
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Appendix A: Definitions for Cosserat shells

Inertia quantities

(A1)

Resultant forces, couples and intrinsic director couples

(A2)

Assigned fields due to body force

(A3)

Assigned fields due to contact forces

(A4)

Appendix B: Definitions for Cosserat rods

Inertia quantities

(B1)

Resultant forces, couples and intrinsic director couples

(B2)

Assigned fields due to body force

(B3)

Assigned fields due to contact forces
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Appendix C: Definitions for Cosserat points

Inertia quantities

(C1)

Intrinsic director couples

(C2)

Assigned fields due to body force

Assigned fields due to contact forces

(C3)

(C4)
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1. Abstract

This paper deals with the development and use of scaled-down models in order
to predict the structural behavior of large prototypes. The concept is fully described and
examples are presented which demonstrate its applicability to beam-plates, plates and
cylindrical shells of laminated construction. The concept is based on the use of field
equations, which govern the response behavior of both the small model as well as the
large prototype. The conditions under which the experimental data of a small model can
be used to predict the behavior of a large prototype are called scaling laws or similarity
conditions and the term that best describes  the process is structural similitude. Moreover,
since the term scaling is used to describe the effect of size on strength characteristics of
materials,  a discussion is included which should clarify the difference between “scaling
law” and “size effect”. Finally, a historical review of all published work in the broad area
of structural similitude is presented for completeness.

2. Introduction

Aircraft and spacecraft comprise the class of aerospace structures that require
efficiency and wisdom in design,  sophistication  and accuracy in analysis and numerous
and careful experimental evaluations of components and prototype,  in order to achieve
the necessary system reliability, performance and safety.

Preliminary and/or concept design entails the assemblage of system mission
requirements, system expected performance and identification of components and their
connections as well as of manufacturing and system assembly techniques. This is
accomplished through experience based on previous similar designs, and through the
possible use of models to simulate the entire system characteristics.
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Detail design is heavily dependent on information and concepts derived from the
previous step. This information identifies critical design areas which need sophisticated
analyses, and design and redesign procedures to achieve the expected component
performance. This step may require several independent analysis models, which, in
many instances, require component testing.

The last step in the design process, before going to production, is the verification
of the design. This step necessitates the production of large components and prototypes
in order to test component and system analytical predictions and verify strength and
performance requirements under the worst loading conditions that the system is expected
to encounter in service.

Clearly then, full-scale testing is in many cases necessary and always very
expensive. In the aircraft industry, in addition to full-scale tests, certification and safety
necessitate large component static and dynamic testing. The C-141A ultimate static tests
include eight wing tests, 17 fuselage tests and seven empennage tests (McDougal, 1987).
Such tests are extremely difficult, time consuming and definitely absolutely necessary.
Clearly, one should not expect that prototype testing will be totally eliminated in the
aircraft industry. It is hoped, though, that we can reduce full-scale testing to a minimum.

Moreover, crashworthiness aircraft testing requires full-scale tests and several
drop tests of large components. The variables and uncertainties in crash behavior are so
many that the information extracted from each test, although extremely valuable, is
nevertheless small by comparison to the expense. Moreover, each test provides enough
new and unexpected phenomena, to require new tests, specially designed to explain the
new observations.

Finally, full-scale large component testing is necessary in other industries as
well. Ship building, building construction, automobile and railway car construction all
rely heavily on testing.

Regardless of the application, a scaled-down (by a large factor) model (scale
model) which closely represents the structural behavior of the full-scale system
(prototype) can prove to be an extremely beneficial tool. This possible development must
be based on the existence of certain structural parameters that control the behavior of a
structural system when acted upon by static and/or dynamic loads. If such structural
parameters exist, a scaled-down replica can be built, which will duplicate the response of
the full-scale system. The two systems are then said to be structurally similar. The term,
then, that best describes this similarity is structural similitude.

3. Historical Review

Similarity of systems requires that the relevant system parameters be identical
and these systems be governed by a unique set of characteristic equations. Thus, if a
relation of equation of variables is written for a system, it is valid for all systems which
are similar to it (Kline, 1965). Each variable in a model is proportional to the
corresponding variable of the prototype. This ratio, which plays an essential role in
predicting the relationship between the model and its prototype, is called the scale factor.
In establishing similarity conditions between the model and prototype, two procedures
can be used, dimensional analysis and direct use of governing equations.

Models, as a design aid, have been used for many years, but the use of scientific
models which are based on dimensional analysis was first discussed in a paper by
Rayleigh (1915). Similarity conditions based on dimensional analysis have been used
since Rayleigh’s time (Macagno, 1971), but the applicability of the theory of similitude
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to structural systems was first discussed by Goodier and Thomson (1944) and later by
Goodier (1950). They presented a systematic procedure for establishing similarity
conditions based on dimensional analysis.

There exist several books that refer to all elements of structural similitude.
Murphy (1950), Langhaar (1951), Charlton (1954), Pankhurst (1964) and Gukhman
(1965) all dealt with similitude and modeling principles, and most of them dealt with
dimensional analysis. Kline (1965) gives a perspective of the method based on both
dimensional analysis and the direct use of the government equations. Szucs (1980) is
particularly thorough on the topic of similitude theory. He explains the method with
emphasis on the direct use of the governing equations of the system. A recent book by
Singer, Arbocz and Weller (1997) devotes an entire chapter on modeling with emphasis
on dimensional analysis concepts.

A few studies concerning the use of scaled-down shell models have been
conducted in the past. Ezra (1962) presented a study based on dimensional analysis, for
buckling behavior subjected to impulse loads. A similar investigation was presented by
Morgen (1964) for an orthotropic cylindrical shell subjected to a variety of static loads.
Soedel(197 1) investigated similitude for vibrating thin shells.

Due to special characteristics of advanced reinforced composite materials, they
have been used extensively in weight efficient aerospace structures. Since reinforced
composite components require extensive experimental evaluation, there is a growing
interest in small scale model testing. Morton (1988) discusses the application of scaling
laws for impact-loaded carbon-fiber composite beams. His work is based on dimensional
analysis. Qian et al. (1990) conducted experimental studies of impact loaded composite
plates, where the similarity conditions were obtained by considering the governing
equations of the system. These works and many other experimental investigations have
been conducted to characterize the size effect in material behavior for inelastic analysis
(size effects are discussed in a later section).

In recent years, due to large dimensions and unique structural design of the
proposed space station, small scale model testing and similitude analysis have been
considered as the only option in order to gain experimental data. Shih et al. (1987),
Letchworth et al. (1988), Hsu et al. (1989) and McGowan et al. (1990) discussed the
possibility of scale model testing of space station geometries, especially for vibration
analysis. Most of these studies have used complete similarity (defined in a later section)
between model and prototype.

The present authors have published several papers [Simitses and Rezaeepazhand
(1993), Rezaeepazhand et al. (1996), Rezaeepazhand et al. (1995), Simitses and
Rezaeepazhand (1995), Simitses et al. (1997), and Rezaeepazhand and Simitses (1997)]
that deal with the design of scaled-down models and the use of test data of these models
to predict the behavior of large prototypes. The behavior includes displacements,
stresses, buckling loads, and natural frequencies of laminated beam-plates, plates and
shells. In these studies, in the absence of model test data, the authors theoretically
analyzed the models, and they used the similarity conditions, obtained by the use of the
governing equations, to predict the behavior of the prototype. They then theoretically
analyzed the prototype and they compared these results to the predictions. In most cases,
the compared results were very close to each other and they concluded that the designed
model can accurately predict the behavior of the prototype. Very recently, Ochoa and her
collaborators (1999a, 1999b) applied similitude theory to a laminated cylindrical tube
under tensile, torsion and bending loads and under external and internal pressure. They
demonstrated the validity of developing a scale model, testing it and use the similarity
conditions to predict the behavior of the prototype.
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4. Scaling Effects in Composites

Considerable renewed interest has been exhibited in the broad field of scaling in
the recent years, as evidenced by the multitude of research papers that have appeared in
the technical literature. Before discussing any and all efforts, we must have a good
understanding, for clear discussion of the meaning of the words that have been used.
These words are scaling or scale effects, similarity conditions or scaling laws and size
effects.

Scaling effects mean the effect of changing the geometric dimensions of a
structure or structural component on the response to external causes. The external causes
include all types of forces. Examples of the above is a beam made out of metallic
material or man-made composite and subjected to bending. The main questions
associated with predicting the response of the beam are: Are stiffness and strength
affected by scaling? This means is the effective Young’s modulus (both in tension and
compression), which is usually obtained from small specimens affected by scale. In
addition, is the strength affected by scale? Recognizing that beams are primarily
designed for strength the answer to the second question is important. On the other hand,
since columns are primarily designed for stiffness (buckling), the answer to the first
question is important.

In this context, the use of the term size effect is similar to the term scale effect.
On the other hand one may wish to find the conditions under which the behavioral
response of a small size beam and a large size beam are similar. In this case, the interest
is to find the similarity conditions or scaling laws in order to achieve similarity in
response. In this context, the primary interest is to be able to test a small scale model,
obtain response characteristics (displacements, buckling loads, vibration frequencies,
etc.) and use the scaling laws to predict the behavior of the large prototype. In this
second case, one can still use the term scaling effects, if he clearly does not refer to size
effects on strength and stiffness.

4.1. SIZE EFFECTS

There exist two main sources of recent studies of size effects. First, Jackson
(1994) contains an outline of papers presented at a Workshop on Scaling Effects in
Composite Materials and Structures, and second, Bazant and Rajapakse (1999) is a
compilation of papers dealing with, primarily, fracture scaling.

From the conclusions, of virtually all presenters at the workshop (see Jackson,
1994) who dealt with size effects, one can say that the size effect on stiffness is almost
nonexistent (Jackson and Kellas, 1994; Camponeshi, 1994; and Johnson et al., 1994).
Similarly, the size effect on strength has created some controversy. Jackson and Kellas
(1994) conclude that there is considerable size effect on strength. Grimes (1994)
contends that for solid laminates, the largest size effect on static strength is less than
4.5%. Furthermore, he states that the cause of scale effects is not size but other factors
such as poor quality tooling, differences in environmental exposure, etc. A similar
conclusion was reached by O’Brien (1994) who claims that the effect of scaling is not
because of size, but because different damage sequence occurs in two different sizes. In
a private communication by L.B. Greszczuk (1999) of McDonnell Douglas Space
Systems Co., he stated, quote “If the small and big parts are made by the same process,
there is not size effect neither on stiffness nor on strength.” He further explained that the



www.manaraa.com

299

tests performed at his company on specimens with twelve to one ratio in thickness
(laminates), reveal that the effect on stiffness is nonexistent, while the effect on strength
is less than 4%. The specimens used were carefully manufactured by the same process
and they had the same filament volume fraction and porosity.

The objective of most papers Bazant and Rajapakse (1999) is to study the size
effect on fracture of ice, concrete and notched composite beams. In these papers, the
conclusion is that size does affect fracture and crack propagation.

One particular paper in Bazant and Rajapakse (1999), that by Daniel and Hsiao
(1999), dealt with the thickness effect on compressive strength of unnotched laminates.
It is an experimental study that used various sizes and layups and it concluded that the
size effect is extremely small. Further evidence that size has negligible effect on stiffness
is provided by the tests performed by Jackson (1990) on graphite/epoxy beams at NASA
Langley. The scale varied from one-sixth to full and she employed unidirectional and
quasi-isotropic layups.

Clearly, then one can at this junction say with confidence that size effect on
stiffness is negligibly small and that more work on strength needs to be done in order to
explain the reasons for the conflicting conclusions (if there is an effect, what causes it).

In view of the above, the authors embarked into a research program on structural
similitude based on the following premises: (a) both model and prototype are governed
by the same field equations (equilibrium, kinematic relations and constitutive equations,
subject to boundary conditions), (b) the only set of equations that may be affected by size
are the constitutive relations. It has already been concluded though that stiffness is not
affected by size and therefore one is safe to use the same constitutive relations for model
and prototype up to but not in the vicinity of strength limits, (c) damage accumulation for
both model and prototype is minimal. On this basis one can use similitude theory and
obtain the similarity conditions.

5. Theory of Similitude

Similitude theory is concerned with establishing necessary and sufficient
conditions of similarity between two phenomena. Establishing similarity between
systems helps to predict the behavior of a system from the results of investigating other
systems which have already been investigated or can be investigated more easily than the
original system. Similitude among systems means similarity in behavior in some specific
aspects. In other words, knowing how a given system responds to a specific input, the
response of all similar systems to similar input can be predicted.

The behavior of a physical system depends on many parameters, i.e. geometry,
material behavior, dynamic response and energy characteristics of the system. The nature
of any system can be modeled mathematically in terms of its variables and parameters. A
prototype and its scale model are two different systems with similar but not necessarily
identical parameters. The necessary and sufficient conditions of similitude between
prototype and its scale model require that the mathematical model of the scale model can
be transformed to that of the prototype by a bi-unique mapping or vice versa (Szucs,
1980). It means, if vectors X p and X m are the characteristic vectors of the prototype and
model, then we can find a transformation matrix Λ such that:

(1)
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The elements of vector X are all the parameters and variables of the system. A diagonal
form of the transformation matrix is the simplest form of transformation.The diagonal
elements of the matrix are the scale factors of the pertinent elements of the characteristic
vector X.

(2)

where denotes the scale factor of xi. In general the transformation matrix is
not diagonal.

In establishing similarity conditions between the model and prototype two
procedures can be used, dimensional analysis and direct use of governing equations. The
similarity conditions can be established either directly from the field equations of the
system or, if it is a new phenomenon and the mathematical model of the system is not
available, through dimensional analysis. In the second case, all of the variables and
parameters, which affect the behavior of the system, must be known. By using
dimensional analysis, an incomplete form of the characteristic equation of the system can
be formulated. This equation is in terms of nondimensional products of variables and
parameters of the system. Then, similarity conditions can be established on the basis of
this  equation.

In our studies, we consider only direct use of the governing equations procedure.
This method is more convenient than dimensional analysis, since the resulting similarity
conditions are more specific. When governing equations of the system are used for
establishing similarity conditions, the relationships among variables are forced by the
governing equations of the system.

The field equations of a system with proper boundary and initial conditions
characterize the behavior of the system in terms of its variables and parameters. If the
field equations of the scale model and its prototype are invariant under transformation 
and , then the two systems are completely similar. This transformation defines the
scaling laws (similarity conditions) among all parameters, structural geometry and cause
and response of the two systems. Examples of the direct use of governing equations is
offered below.

5.1. BENDING OF LAMINATED BEAM PLATES

Consider a laminated beamplate of length a and width b and simply supported at
both ends. We desire to find the maximum deflection of this beamplate. The beamplate
is subjected to a transverse line load. By assuming that the displacement functions are
independent of y, or u=u(x), v=0, w=w(x) (cylindrical bending), from Ashton and
Whitney (1970), the governing differential equations and boundary conditions are
reduced to:
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and the B.C.s at x = 0, a are:

w = 0

Equation (1) can be written as:

By applying similitude theory, the resulting similarity conditions are:

Similarly from Eqs. (5), (6) and (7) we have:

or
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(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

(11)

(12)

(13)
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The condition depicted by Eq. (13) can be obtained by combining Eqs. (10) and (12). So,
Eqs. (10) through (12) denote the necessary conditions for complete similarity between
the scale model and its prototype, as far as deflectional response is concerned.

Note that the similarity conditions, Eqs. (10)-(12) are three, while the number of
geometric and material parameters, cause parameter (load) and response parameters (u
and w) is much larger than three. This means that there is freedom in designing models
for a given prototype. In addition, if, in projecting the data of the model to predict the
behavior of the prototype, all three scaling laws are used, then we have complete
similarity. If only one (or two) scaling laws are used, then we have partial similarity.

For this particular application, experimental data was supplied by Professor
Sierakowski (1994) for tests performed on beam plates. The total number of laminates
used is ten. In Simitses (1999), some beam plates are considered as models and some as
prototypes. Similitude theory is used and the results are compared to the test results of
the prototypes (see Simitses, 1999 for details). Partial similarity is used in the
comparison.

In addition to the above, similitude theory is employed in a case where
experimental results do not exist. In this case, the theoretical results of the model are
treated as test data, then a scaling law (partial similarity) is used to predict the behavior of
the prototype and the predictions are compared to the theoretical results of the prototype.
If these two compare well, success has been achieved in designing the model and in using
similitude theory.

Consider a cross-ply laminated E-Glass/Epoxy plate composed of 96 orthtropic
layers (0/90/0/. . .)96 as the prototype. We desire to find the maximum deflection of the
prototype by extrapolating the pertinent values of a small scale model. The model has the
same stacking sequence as the prototype but with a smaller number of layers. The
prototype and its scale model have the following characteristics:

Prototype (0(90/0/. . .)96: a = 90 in. b = 100 in.
h = 0.858 in. N = 96,

model (0(90/0/. . .)16: a = 5.0 in. b = 6.139 in.
h = 0.143 in. N = 16,

scale factors: λa= 18 λb = 16.29
λh =6 λN = 6.

In designing the model, we assume that it is made of the same material as the prototype
and that λq=λb. By employing only the similarity condition of Eq. (11) (partial
similarity), the results are plotted on Fig. 1. For details, see Simitses and Rezaeepazhand
(1993).



www.manaraa.com

303

Fig. 1. Theoretical and predicted maximum deflections of prototype (0°/90°/0°...) 96

when the model is (0°/90°/0°...)16

5.2. BUCKLING AND VIBRATIONS OF PLATES

Consider a simply supported, rectangular, symmetric, cross-ply laminated plate.
The governing differential equation for buckling and vibration analyses is given by:

(14)

For buckling alone the characteristic equation is:
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For free vibrations the characteristic equation is

By applying similitude theory to Eq. (14), we obtain:

which yield the following scaling laws:

(15)

(16)

(17)

(18)

(19)

For details and results, see Rezaeepazhand et al. (1995a), Simitses and
Rezaeepazhand (1995) and Rezaeepazhand et al. (1995b).

6. Application to Shell Configurations

Complete similarity and partial similarity were applied to laminated cylindrical
shell configurations (Rezaeepazhand et al., 1996; Simitses et al., 1997; and
Rezaeepazhand and Simitses, 1997). Details can be found in these references, but some
basic equations and steps are presented, herein, for completeness. The buckling equation
for a symmetric, laminated, cross-ply (Bi j = D16 = D26 = A16 = A26 = 0), cylindrical shell
(see Jones and Morgan 1975) is given by:
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(20)

and

The lowest eigenvalue corresponds to the buckling load, and minimization with respect to
integer values of m and n yields the critical load.

Equation (20) represents the buckling response of both prototype and its models.
Applying similitude theory to the preceding equation, Eq. (20) yields the following
scaling laws for symmetric, cross-ply, laminated cylinders:

(22)

(23)

(24)
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(25)

(26)

(27)

(28)

(29)

(30)

and
where

The nine scaling laws, Eqs. (22)-(30) are the necessary scaling laws for cross-
ply laminated cylindrical shells for axial compression, lateral pressure, and hydrostatic
pressure. The conditions that represent structural geometries and mode shapes, Eqs. (22)-
(25) are the necessary scaling laws for symmetric cross-ply laminated cylinders
regardless of the destabilizing load.

As is apparent, the scaling laws are arranged in the form of different scale
factors for each load case (ψ). It should be pointed out that the presented form of
arranging the scaling laws is not unique. However, previous experience of establishing
scaling laws (Rezaeepazhand et al., 1995a) strongly recommends this type of
representation.

6.1. SCALING LAWS FOR LATERAL PRESSURE LOAD

For the case of a cylinder subjected to lateral pressure p, N yy = p R and Eqs.

(26)-(30) assume the following form:
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(31)

(32)

(33)

(34)

(35)

where and have already been defined, and

denotes the scale factor of parameter xi.

Parenthetical remarks: For the case of lateral pressure

Therefore, Similarly, from the definition of

one can write Use of

these two expressions in Eq. (26) yields Eq. (31). In a similar manner one can derive
Eqs. (32)-(35).

Equations (31)-(35) are the necessary scaling laws for symmetric, cross-ply,
laminated cylinders subjected to uniform lateral pressure.

The interested reader is referred to Rezaeepazhand et al. (1996) and Simitses et
al. (1997) for results with primarily partial similarity with distortion in number of plies,
stacking sequence and cylinder length, radius and thickness. Distortion here means that
prototype and model have different parameters (as mentioned above).

7. Discussion

It has been demonstrated through the studies reported herein, that structural
similitude is a powerful tool in minimizing the need for full scale and large component
testing of structural systems. Future work should include the study of systems that
exhibit imperfection sensitivity, extension to sandwich configurations and validation of
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the process through an experimental program for laminated plates and shells as well as
beam plates, plates and shells of sandwich construction.

Through this review, the authors have demonstrated a procedure that can be
used in designing small scale and easily testable models to predict the behavior of large
prototypes through the use of scaling laws. These laws are based on the premise that
both model and prototype are governed by the same field equations and that the systems
behave in a linearly elastic manner and they are free of damage (delaminations, fiber
breaks, matrix microcracking, etc.). This last premise guarantees that no size effects are
present.
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Reduction of the Linear Sanders-Koiter Equations for Fully Anisotropic

Non-Circular Cylindrical Shells to Two Coupled Fourth-Order Equations
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Abstract

equations contain pointwise formal errors of O where ε = h /R is the ratio of the constant

shell thickness to the mean cross sectional radius. For a circular cylindrical shell the equations

With the aid of the static-geometric duality of Goldenveiser (1940) and Lure (1940), order

of magnitude estimates, and ideas developed by Sanders (1967) for the reduction of the govern-

ing equilibrium and compatibility equations for elastically isotropic shells, it is shown that the

governing Sanders-Koiter equations for fully anisotropic (21 elastic constants) general (non-

circular) cylindrical shells can be reduced to two coupled fourth-order equations for a dimen-

sionless resultant function and its static-geometric dual, a dimensionless rotation function. The

have, except for negligible terms, the same form as those derived recently by McDevitt & Sim-

monds (1999), but involve different unknowns.
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Introduction

Recently, McDevitt & Simmonds (1999) showed that the linear first-approximation shell

theory developed independently and simultaneously by Sanders (1959) and Koiter (1959), when

specialized to fully anisotropic circular cylindrical shells, can be reduced to two coupled equa-

tions for a dimensionless stress function F and its static-geometric dual G, a dimensionless cur-

vature function. Furthermore, it was shown that this reduction could be achieved exactly pro-

vided one added to the stress-strain relations certain small terms that, by arguments due to Sim-

monds (1971) and Koiter & Clément (1979), could be shown to lead to mean-square (L2 ) errors

of the order of ε. Such errors are of the same order as others unavoidably contained in any first-

approximation shell theory, as emphasized by Koiter (1959). For non-circular cylindrical shells,

the variable cross-sectional curvature prevents the introduction of stress and curvature functions.

However, by suitably differentiating and combining the equilibrium and compatibility conditions

and making reasonable (and standard) order of magnitude arguments, I shall show that these

equations may be reduced to two fourth-order partial differential equations for χ, a dimension-

less resultant function, and φ, its static-geometric dual, a dimensionless rotation function. Save

for a few negligible terms, these equations have the same form as those of McDevitt & Sim-

monds (1999), although the unknowns are different (χ and φ instead of F and G ).

I note that, for elastically isotropic general cylindrical shells, Sanders (1967) has shown

that the governing equations can be reduced to a single complex-valued fourth-order partial dif-

ferential equation for an unknown whose real part is the trace of the stress resultant tensor and

whose imaginary part is its static-geometric dual, the trace of the bending strain tensor. Unfor-

tunately, this elegant approach no longer works for elastically anisotropic shells.
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Geometry

Let denote the standard orthonormal triad of base vectors associated with

a set of circular cylindrical coordinates {r, θ, z }. Then the midsurface of a general cylinder may

be given the vector parametric form

Here, x and y are, respectively, dimensionless axial and circumferential distances, derivatives

with respect to which will be denoted by a prime (´) and dot (•), respectively. Further, ρ (y) is a

dimensionless radius and

(1)

(2)

the ±-sign allowing for the possibility that the cylinder may fold back on itself. (If the cross-

section is star-shaped with respect to a point, then the + sign can be taken. For a circular

cylinder, θ = y.) In addition,

is the mean cross-sectional radius.

(3)

In Cartesian tensor notation (which we shall use intermittently for conciseness), let R 2a αβ

and Rb αβ denote, respectively, the metric and curvature tensors of C. It then follows from (1)

and (2) that

(4)

and Greek indices range from 1 to 2.
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The governing equations

Let

denote, respectively, the symmetric extensional and bending strains and the (modified) sym-

metric stress resultants and couples of the Sanders-Koiter first-approximation shell theory for a

general cylindrical shell. In (5), denotes some nominal Young’s modulus. Further, let

denote any external loads in the axial, circumferential, and outward normal

directions, respectively, and let

ε = h /R (6)

denote the fundamental small parameter of shell theory. Then the equilibrium and compatibility

conditions of the Sanders-Koiter theory may be written as

(5)

(7)

(8)

(9)

(7*)

(8*)

(9*)

These equations display the static-geometric duality of Goldenveiser (1940) and Lure (1940).
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That is, the first set of equations, (7)-(9), with px  = py = p, goes over into the second set, (7*)-

(9*), if the sets of variables below on the left are replaced by those on the right:

(10)

Resultant and Rotation Functions

The first of the three equilibrium equations, (7), may be satisfied identically by the intro-

duction of a resultant function χ ( x, y ) such that

Then (8) reduces to

(11)

Likewise, through the introduction of the dual rotation function φ (x, y) such that

(12)

(7*) is satisfied identically and (8*) reduces to

(11*)

(12*)

Finally, I use (9) and (9*) to eliminate, respectively, Ny  from (12) and Kx from (12*), so obtain-

ing

(13)

(13*)

With the introduction of stress-strain relations and the neglect of certain terms, these equations
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will reduce to the two coupled equations for χ and φ that are the goal of this paper.

Stress-strain relations

To exploit fully the static-geometric duality, I follow McDevitt & Simmonds (1999) and

take the stress-strain relations in the partially inverted forms

(14)

and

(14*)

where C *
αβλµ = C λµαβ and A *

αβλµ is the static-geometric dual of -A αβλµ . The 21 independent

elastic constants in (14) and (14*) display the symmetries

(15)

A derivation of (14), (14*), and (15) from the conventional stress-strain relations (stress resul-

tants and couples in terms of extensional and bending strains) is given by McDevitt & Simmonds

(1999).

Special cases

I now consider three special cases: (a) inextensional bending and its static-geometric dual,

membrane theory; (b) semi membrane-inextensional bending theory; and (c) quasi-shallow shell

theory. For simplicity, I set henceforth px = py = p = 0.¹ I then present a form of (13) and (13*)

involving χ and φ only that embraces these three cases and I conjecture that this equation is, in

fact, a good approximation for any type of deformation, with a formal pointwise relative error of

O .

¹ At the expense of some additional algebra, such loading terms may be included without difficulty.
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(19)

(a) inextensional bending and membrane theory

By definition, inextensional bending means that in (14*)

(16)

so that one obtains immediately from (13*),

(17)

where P and Q are sufficiently smooth but otherwise arbitrary functions of y. The corresponding

values of K x, Ky , and K follow from (9*) and (11*) as

(18)

The stress resultants are statically determinant and follow from (11) and (12), where χinext ≡ X

comes from (13). Thus,

This equation may be integrated easily.

The dual of (19), which applies to membrane theory, that is, which applies when

(20)

follows immediately as

(19*)

(b) Semi membrane-inextensional bending theory

This type of behavior, first identified by Vlasov—see Novozhilov (1970, § 49)—,

represents very slow axial decay in very long shells. The governing equations may be obtained

by scaling the axial distance and certain of the stress resultants and bending strains as follows:
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(21)

It then follows from (11), (11*), (13), (14), and (21), with ∂( )/∂ζ= ( ), ζ , that

(22)

Likewise,

and

(23)

When (21)-(24) are inserted into (13) there follows

By the static-geometric duality I obtain immediately its companion,

(24)

(25)

(25*)

Note that if (25*) is multiplied by and added to (25), one obtains the

complex-valued equation

(26)

where Note also that if ζ is replaced by x and y is replaced by ε 1/4 α,

then (26) also applies to what Goldenveiser (1961, pp. 428 ff.) calls a “degenerate” edge effect

which, on a general cylindrical shell, exists near an edge y = constant and is of dimensionless

width O(ε1/4).
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The well-known approximations of Donnell-Mushtari-Vlasov apply to a geometrically

shallow shell, which a general cylindrical shell is not. However, Libai (1962)—and later,

independently, Koiter (1966)—introduced the fruitful idea of a “quasi-shallow shell.” Their pur-

pose was to characterize shell solutions which vary rapidly relative to some characteristic

geometrical dimension of the shell, for example, the mean radius R for general cylindrical shells.

To see what form (13) and (13*) take for quasi-shallow shell theory, let

and note that if [ƒ–1 (y)]' = O(1), then

Thus,

and

From (11)-(12*), (14), and (14*) follows

(27)

(28)

(29)

(29*)

(30)

(30*)

and

Here, with

(31)
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(32)

and A is the static-geometric dual of , obtained by replacing A*
αβλµ everywhere in (31) by its

dual, –A αβλµ .

Conjecture

Examining the special forms taken by the basic differential equations (13) and (13*) for the

three special cases of (a) inextensional bending and membrane theory, (b) semi membrane-

inextensional bending theory, and (c) quasi shallow-shell theory, I note that all are special cases

of the following two coupled equations:

and

(33)

(33*)

where

(34)

(35)

(36)

(37)

and MA and NA are the static-geometric duals, respectively, of M *
A and N*

A .

Equations (33) and (33*) may be replaced by others of equal accuracy but, perhaps, more

symmetry, by adopting an observation by Simmonds (1966) for elastically isotropic circular
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cylindrical shells, namely, that once stress-strain relations have been introduced into the right

sides (13) and (13*), then there are inherent errors of relative order ε. Let me exploit this flexi-

bility by forming the combination (1 - εa)×Eq.(l3) - εb× Eq.(l3*), where a and b are arbitrary

O(1) constants. Setting py = p = 0, I thus obtain an equation of the form

(38)

where

(39)

(40)

(41)

and where it is understood that the dimensionless stress couples in (38)-(41) have been replaced

by the stress-strain relations (14). The conclusion is that the accuracy of (33) is unchanged if the

term is added to the right side. By the static-geometric duality, the same is true if the

term is added to the right of (33*). In particular, if we take

(42)

then, for a circular cylindrical shell (ƒ = l), (33), less the error term, reduces to an equation of the

same form as equation (39) of McDevitt & Simmonds (1999). (As noted in the introduction,

their unknowns are a dimensionless stress function F and a dimensionless curvature function G . )

Likewise, (33*), less the error term plus the term , reduces to the same form as their

equation (39*), with

(42*)
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Displacements

In the Sanders-Koiter theory, the tangential displacements R (u, v) = R uα and the outward

normal displacement Rw are given by the displacement-strain-stress relations

(43)

As Koiter (1959) emphasized, the errors made in the stress-strain relations (43) by replacing the

dimensionless stress resultants N αβ by terms of the form Nαβ + εDαβλµ M λµ and the dimension-

less bending strains by terms of the form Kαβ + εD *
αβλµEλµ are of the same order of magnitude

as the inherent errors in these equations. If there are no surface loads, this means that (11)-(12*)

may be used in (43) with only the χ and f-terms retained. Thus, with α = β = 2,

(44)

An integration with respect to x yields

(45)

It is understood that the indefinite integrals contain (by virtue of their definition) arbitrary func-

tions of integration.

Next, setting α = 1, β = 2 in (43), I obtain

(46)

Solving for v', using (45), and integrating with respect to x, I find that
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(47)

Finally, setting α = β = 1 in (43) and using (3) 2, I get

(48)

Inserting (47) and solving for w, I get

(49)

Boundary conditions

Canonical (classical) boundary conditions can be inferred from an expression for the virtual

work of the edge forces and consist of prescribing either displacements and a rotation or the con-

jugate reduced forces and edge moment they multiply. For a general edge, these can be deduced

from equations (14)-(17) and (23) of Budiansky & Sanders (1963). Here, I consider the specific,

non-tensorial form of these boundary conditions for two types of edges: x = constant and

y = constant.
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On x = constant prescribe either

(50)

On y = constant prescribe either

(51)

Note that in the boundary conditions, one cannot, in general, neglect terms of O

compared to Thus, for example, in the second of the four boundary conditions listed

in (50), one must retain the term 2ε ƒM and compute it, as with the other stress couples that

appear in (50) and (51), by using the stress-strain relation (14) together with the expressions

(11)-(12*) for the stress resultants and bending strains in which, however, only the φ- and χ-

terms need be retained.

Conclusions

The analytical advantages (as opposed to numerical ones) of working with fewer differen-

tial equations of higher order are well attested in the literature, especially for the application of

perturbation methods. In particular, this is reflected in the many papers reviewed by Simmonds

(1966) and Sanders (1983) devoted to reducing the linear field equations for elastically
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elastically isotropic, circular cylindrical shells to two coupled fourth-order equations. I hope

that the present paper has shown how these efforts may be extended to elastically anisotropic,

general cylindrical shells.

However, my derivation of the two, reduced fourth-order partial differential equations (33)

and (33*) for a dimensionless resultant function χ  and a dimensionless rotation function φ leaves

open the important question: Can these equations be shown rigorously to contain pointwise

errors of O or smaller? I commend this challenge to my colleagues who work in shell

theory.
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LARGE DEFORMATION OF A PRESSURIZED TUBE

CHARLES R. STEELE
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1. Introduction

The motivation for this work is the need for efficient means of computing the

deployment of large, inflatable, space structures. Recent work has been on the load-

deformation properties of folded and rolled pressurized tubes. The approach is to use

basic properties of thin shells to determine appropriate approximations for the deformed

shape. This is then used in an energy formulation, in which the work of the pressure and

the external loads dominates. For some problems, the stretching of the tube wall is also

significant. In the present work the behavior of a tube with symmetric rigid blade

loading is considered. Previous results are inadequate for the moderate values of the

blade displacement. A satisfactory solution is obtained with a modified shape function

for the tube cross section and with elastic stretching of the wall.

2. Background

The large deformation of thin-walled structures is of importance in many areas.

Generally, the analysis requires rather complex equations and intensive computation.

However, there are key problems that have been handled with minimal computation by

appealing to basic thin shell behavior. One example is the analysis of post-buckling

behavior by Porgorelov (1960). A second is the notion of an inverted dimple in a

spherical shell initiated by Ashwell (1960) and extended to the fluid-filled shell by

Taber (1982). Possibly the best example of a difficult problem reduced to a few line
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analysis is the instability of the measure band by Rimrott (1970). The present work is in

this spirit.

The concern is the large deformation of tubes with internal pressure. For thin walls

of high modulus material, the deformation can be considered as primarily inextensional

with negligible bending resistance of the wall. The behavior of thin membranes has

been the subject of many investigations, as discussed by Jenkins (1991) and by Libai

and Simmonds (1998). Our motivation has been the deployment of large, inflatable,

space structures. General structural considerations are surveyed by Szyszkowski and

Glockner (1990), and specific current plans are outlined by Lou and Feria (1998).

Because high degrees of accuracy and reliability are desired, and ground based

simulations are often not possible, numerical simulation of deployment is important.

Simulations of the dynamic deployment of large antennas with z-folded tubes are in

Tsoi (1997), in which a crude approximation for the joint moments is made. However,

results are highly dependent on the joint moments, so a better determination is

necessary. Direct numerical computation of the long-time transient response of a

structure with several hundred joints in unfolding tubes, including detailed calculation

of the joints, is prohibitive. Consequently, we were motivated to find an approach

requiring minimum computation.

3. Recent Work

A basic problem is the symmetric blade loading of a pressurized tube, as shown in

Fig. 1. This problem has the difficulties associated with large displacement and is a

good beginning because of the relatively simple geometry. One practical application of

this specific configuration may the direct determination of the internal pressure in a

biological cell, such as the outer hair cell in the cochlea (Tolomeo, et al., 1996). The

bending of a tube, discussed in Fay and Steele (2000), is of importance, since this is the

fundamental mechanism in the deployment of z-folded tubes. Another basic problem is

the long tube in a rolled configuration, discussed in Fay and Steele (1999) and Steele

and Fay (1998). As pointed out by J.F.V. Vincent (pers. comm.) these systems are also
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used in the insect world. Pressure rather than muscle is used for rapid deployment of

wings (Glaser and Vincent, 1979) and links, as well as coils (Bänziger, 1971).

Figure 1. Geometry for symmetric pinch load acting on cylindrical tube of radius
with tube of radius R0. The region near the blade load Q has the constant radius of

curvature r t and subtends the angle β . The blade displacement is δ. The points P

and S are equidistant from the tube end and the distance H apart.

Generally, large displacement of thin structures is associated with wrinkling.

Substantial progress has been made on the direct analysis of the wrinkling, as by Epstein

and Forcinito (1999). The interaction of bending and wrinkling is discussed by Cao and

Boyse (1997) and Qui, et al. (1994). However, for the high internal pressure in Fig. 1,

an alternate approach is used in Fay and Steele (1999).

3.1. APPROXIMATE THEORY
The main assumption is that all the work done by the applied loads goes into changing

the volume and not into stretching and bending the wall of the tube. Such an

approximation was used by Lukasiewicz and Glockner (1984) and undoubtedly has

been used by many others. Consequently the total potential energy consists of only the

work of the internal pressure and the external loads:

(1)

in which V is the volume of the tube, Q and M are external loads, δ and φ are the

corresponding displacements. The difficulty is in determining the volume when kinks

and contacts between different portions of the wall, or between the wall and other

surfaces, occur that are not known a priori. However, guidance can be found from the

conditions used in Fay and Steele (1999).
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3.1.1. Basic principles for geometry.

The principles for the determination of the geometry of the deformed tube are:

(1) An inextensional surface of zero Gaussian curvature must remain a surface of zero

Gaussian curvature in a region of biaxial tension. Thus an initially flat surface can have

a curvature in one direction or the other, but not both, in a region of biaxial tension.

(2) In a region of wrinkling, an “averaged” surface may be defined, for which the

Gaussian curvature can be positive or negative. This occurs in a region with a

nonpositive component of principal stress.

(3) For local equilibrium, constant pressure loading will be carried by constant

curvature.

(4) Discontinuity in slope occurs only when an external line load is present, or in a

direction of wrinkling.

3.1.2. Deformed tube configuration.

The foregoing principles can be used for a construction of the deformed shape. The

blade loading (Fig. 1) causes local deformation. The top and bottom surfaces are in

biaxial tension and by principle (1) must remain surfaces of zero Gaussian curvature.

Consequently, there is a transition from a nonzero component of curvature in the

circumferential direction in the main portion of the tube to a nonzero component in the

plane of the figure in the deformed region near the load. By principle (3), the radius of

curvature is constant in this region with the value rt . By principle (4), the slope of the

top and bottom generators of the cylindrical surface must be continuous except at the

concentrated external load. The coordinates x, y are at the beginning of the deformed

region, while the angle β is the total angle subtended by the deformed region, and θ is

the angle from the edge of the deformed region to the general point P on the top

generator. The point S is the point on the bottom generator that has the same arc length

along the generator to the tube end as point P. The top and bottom generators are

symmetric.
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(3)

Figure 2. Cross section of tube (Shape 1) on the plane through points P and S
which are the distance H apart. The condition that the arc length remains
unchanged provides the width of the reverse curvature region g and the area in
terms of H and the original radius R 0. The vector W is from the center to a point on

the perimeter, around which the arc length is x2.

The cross section, which will be referred to as Shape 1, is shown in Fig. 2. The

initial inflated tube with the circular cross section with radius R0 becomes flattened with

the height H, the distance between points P and S. The distance g is the width of the

region of reversed curvature. The membrane must carry the pressure load by curvature

in one direction or the other. Therefore by principle (3), the sides must have a constant

radius of curvature. By principle (4), there cannot be a slope discontinuity, so the radius

of the sides must be H/2. The width of the flat is:

(2)

and the cross sectional area is:

Therefore, from the side view in Fig. 1, the coordinates of points P and S can be

obtained. Then the distance H between P and S provides the cross-sectional area.

3.1.3. Volume integral.
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For a tube with a symmetrical cross section and planar center line, the volume integral

can be reduced to (Fay and Steele, 2000):

(4)

in which R t is the position vector to the center line, Asection is the area of the cross

section Eq. 3, n is the unit normal to the cross section, and x1 is the parameter along the

center line. The coordinates of points P and S provide all that is needed for the

numerical calculation of the volume from Eq. 4.

3.2. Symmetric blade loading
For the symmetric blade loading of the tube Fig. 1, the computation simplifies greatly.

Because of the symmetry, the points at the top and bottom of the tube remain at the

same axial distance. Thus the cross-sectional area in the deformed region at the angle θ

is:

so the change in volume from Eq. 4 is:

(5)

(6)

and the displacement under the load and the axial displacement are:

(7)

(8)

Thus the potential energy depends on β and the displacement δ, after r t is eliminated

with Eq. 7. The form is best seen from the expansion for small angles β,  for which the

potential Eq. 1 becomes:
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(9)

(10)

where δ∗ = δ/R0, and the derivative with respect to δ must be zero which gives the result:

(11)

Fay and Steele (2000) give the results from experiments on a cylinder made from a

sheet of urethane covered fabric with the thickness t = 0.25mm. The inflated radius was

R0 = 30mm and the length L = 1.380m. The small β approximation Eq. 11 is surprising

close to the experimental values for 0.3 < δ∗ < 0.9. So the general behavior is rather

tame and captured by the approximation (Shape 1) for the volume change. However, the

experimental results for small displacement are substantially less than indicated from

Eq. 11.

4. Need for Improved Theory

The development of the volume approximation from the basic principles of

geometry and the cross section Fig. 2 works quite well for the problems considered, and

can be enhanced by elastic effects for some problems. Since so much is gained for so

little computational effort, it should be possible to improve the results with just a little

more effort. We report some success with this for the symmetric blade loading problem.

For small values of the indentation δ∗ < 0.3, the preceding calculations, based on the

deformation of the cross section in Fig. 2, provide a load much too high. The shape of

the surface is shown in Fig. 3. For the inextensional surface attached to rigid rings on

the ends, an indentation of the top and bottom surfaces means that the sides must bulge
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out and form a surface of negative gaussian curvature. The axial strain in this region is

negative, corresponding to wrinkling and a loss of axial load carrying capability. Thus

all the axial load of the end pressure is carried at the top and bottom regions. For small

indentation, these regions are narrow. So the indentation of these narrow regions forces

the main portion of the shell into compression. This is an implausible situation if the

elasticity of the wall is considered.

Figure 3. Shape of approximate surface with symmetric blade loading using Shape
1. The section is made on the plane passing through the points P and S in Fig. 6. The
negative Gaussian curvature of the side can be seen in this view.

5. Hertzean contact

In Fay and Steele (2000), the very local indentation was considered as a region of a

membrane with known pretension, with the equation:

(12)

in which ϕ is the circumferential angle, R is the radius of the tube, N x and Nϕ are the

axial and circumferential force resultants, and w is the radial displacement. The blade

contact is analogous to the two-dimensional contact problem in elasticity with an

indenter of radius R. Following the analysis in Barber (1992), the relation of the load Q

to the half width of the contact region a is found to be:
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(13)

(14)

then the load-displacement relation for the pressured tube becomes:

(15)

This appears to have the correct behavior for δ∗ < 0.1, for which the approximations

have some justification. However, the transition for 0.2 < δ∗ < 0.3 is missed.

An improved version of Eq. 12 can be derived from moderate rotation theory of

shells:

With this a Fourier series in the circumferential direction can be used to obtain a

solution for the prescribed contact which has the correct behavior for δ∗ < 0.3.

However, the axisymmetric solution of Eq. 16 is not valid. Using the exact

axisymmetric solution of the bending equations produces a local band of circumferential

compression that exceeds the buckling load. Omitting the axisymmetric solution leaves

a discontinuity of slope on the sides, as in Fig. 3, which we are trying to avoid. The

picture is further muddied when the validity of Eq. 16 is examined by considering the

edge stiffness for a circumferential harmonic of line loading. The linear, elastic shell

equations with prestress have the significant prestress parameter which is the ratio of the

axial resultant to the magnitude of the classical axial buckling value in compression,

which translates to pressure divided by the value:
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(17)

The results from the linear equations with bending stiffness indicate that the

approximation Eq. 16 is valid only for pressures high in comparison with Eq. 17.

However, for the experiments:

(18)

A calculation with the full linearized equations for the rigid blade loading indicates a

high compressive stress in the region of the loading, much higher than that due to the

internal pressure and enough to cause local buckling. So it seems that for displacements

larger than the wall thickness, the local buckling will reduce the effectiveness of the

bending stiffness and make Eq. 16 a reasonable approximation. Thus the behavior in for

0.01 < δ* < 0.3 is in the post-buckling range, not easily attained in small steps from the

full linearized equation.

It appears that the relevant pressure parameter for the blade loading is not Eq. 17,

but rather is the magnitude for circumferential buckling of the infinite cylinder (ring

buckling):

(19)

For the experiments:

(20)

When the internal pressure reaches the value of Eq. 19, the tube feels “stiff”  to the

touch.

We conclude that the prestressed membrane equation Eq. 12, or better Eq. 16, has

some relation to the experimental behavior for δ* < 0.3. However, there is a yet a
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contradiction in the use of the equations. If the wall material is inextensional, the radial

displacement of the wall at the blade causes an axial displacement of the axial fibers.

Thus a different axial displacement of each axial fiber must be permitted. This would

correspond to a diaphragm supported end, with a constant value of Nx  at each point of

the circumference. For a rigid ring attached to the end, as in the experiments, the effect

of the elasticity of the wall is significant, and a substantial redistribution of Nx  occurs.

The conclusion is that for δ* < 0.3, neither the approximate shape Fig. 2, nor the

approximate equation Eq. 16 with constant Nx , nor a perturbation solution from the full

linear shell equations will provide a valid solution.

Figure 4. Assumed shape (Shape 2) for one quadrant of cross section. The length a
is the half width of the region of reversed curvature. At the section with the blade
loading as shown, a is the half width of the contact with the blade. The region with
the radius ρ provides the smooth transition to the straight segment of length g. For
the displacement δ prescribed, and the arc length unchanged, the angle γ is the only
free parameter.

6. A New Shape Approximation

Fig. 4. This consists of the flat region on the top of width a, that is the region of axial

A better approach is to consider a different shape for the cross section, as shown in

curvature as before, a transition region with the radius ρ, a straight segment of length g,

and finally a region of the original radius R. For a fixed value of the angle γ , the straight

region and the region of radius R are the same for all cross sections. Thus the outward
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the circumferential arc length give the equations:

curvature on the side seen in Fig. 3 does not occur. The displacement of the top at the

general distance along the axis is denoted by δx . For small displacement δx , the

deformation can remain more local to the top and most of the side can carry the axial

load without wrinkling. The conditions for continuity of geometry and for no change in

and the solution:

(21)

(22)

The area of the cross section is:

(23)

As mentioned before, for the top and bottom to deform and the sides not to wrinkle,

there must be some elastic stretching of the top and bottom regions. For an

approximation of this, we assume: (1) that the x-displacement of each point of the cross

section is the same (no warping) and (2) that the axial strain consists of that due to the

distortion of the cross section plus a constant component. As before, the axial coordinate

Fig. 1 is:

and the y-coordinate at the top is:

(24)

(25)
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The y– and z – coordinates at each point of the cross section Fig. 4 can be easily

determined as a function of the arc length around the circumference. The integral for the

arclength:

(26)

can be computed numerically for each axial fiber. The arc length around the

circumference to a given fiber is sφ. Therefore the elongation of an axial fiber due to the

distortion of the cross sections with zero axial displacement is:

(27)

The potential energy expression that includes the wall elasticity is:

(28)

in which E is Young’s modulus and v is Poisson’s ratio. The volume due to the

distortion of the cross section is denoted by VolCS , and the overlines denote the values

averaged around the circumference. The axial strain is split into the average and

distortional part:

(29)

This axial strain is with the assumption of negligible coupling between the axial fibers,

which is a reasonable approximation for a thin cylinder that is not too long. Taking the

variation of Eq. 28 with respect to the average strain components yields the usual

membrane resultants. What remains is the reduced potential energy:

(30)

which can be written in the dimensionless form:
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(31)

in which the elastic factor is:

(32)

For fixed γ, the volume Vol CS is easily calculated from the cross sectional area Eq. 23

and the displacement Eq. 25, while the displacement u is calculated from the numerical

integration of Eq. 26. For a fixed value of the blade displacement δ*, the minimum of

Eq. 31 is found with respect to changes in rt  and γ. Somewhat surprising is that the

minimum is always found at γ = π /2. The results are shown in Fig. 5 for the high and

low values of pressure used in the experiment. It appears that the correct general

behavior is captured by the cross–sectional shape in Fig. 4.

Figure 5. Blade loading of tube. The experimental results for four levels of pressure
are shown, with the results from cross section approximation Shape 1 and Shape 2.
The later calculation includes elastic energy. For small displacements, Shape 1 is far
too stiff, while the local “Hertzian” solution is too soft. Shape 2 provides the correct
transition to the Shape 1 behavior for δ/R > 0.3.
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The theoretical values show a small dependence on pressure, meaning that the elastic

factor in Eq. 31 is significant. However, the experimental values do not show a clear

dependence on pressure. For δ* > 0.3, the results from Shape 1 become the lower

energy solution.

7. Conclusions

The large deformation of a tube with internal pressure is a challenging problem.

However, in the recent work (Fay and Steele, 1999, 2000), it was found that

deformation can be characterized in a simple and straight–forward manner by

considering basic principles of the behavior of thin shells. Subsequently, little numerical

work is needed for theoretical results that are in reasonable agreement with the

experiments. In the present study, we have focussed on the problem of symmetric blade

loading for relatively small displacements, for which the inextensional solution in Fay

and Steele (2000) is too stiff. The primary reason is that the proper behavior consists of

some elastic stretching of the wall, which we find can be included with a little extra

work and a modified shape function. So an important conclusion is that in the class of

problems of large deformation of inflated tubes with a high modulus wall, the

deformation is primarily inextensional, but there can be situations in which some

elasticity of the wall must be included. The present problem may serve as an interesting

benchmark problem for finite element computations.

The present approach for a constant value of internal pressure can be easily

extended to the case of a tube filled completely with either a compressible or

incompressible fluid. Further generalizations in the loading and constraint seem

possible. An interesting case is the tube on a rigid surface, loaded from one side by a

curved surface. This could be a useful addition to the techniques of manipulation of

cochlear hair cells for the determination of mechanical properties in Tolomeo, et al.

(1996).

The general conclusion is that the volume calculation, based on the observations

and basic principles of shell behavior, does a good job in reducing the large

displacement problems under consideration to a trivial computation.
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ON LATERAL BUCKLING OF END-LOADED CANTILEVERS
WITH TRANSVERSE SHEAR DEFORMATIONS
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1. Introduction

The main features of the problem of lateral buckling of transversely loaded
beams were successfully treated by A.G. M. Michell [l] and L. Prandtl [2] using
appropriate ad hoc considerations. Subsequently, H. Reissner [3] derived the
equations governing this problem by appropriate specialization of Kirchhoff’s
general theory of space-curved beams. In separate ways, Reissner [3] and his
assistant M.K. Grober [4] reduced the lateral buckling problem to the solution of
a boundary value problem for a third order linear differential equation. Specific
application of this theory to the case of a narrow rectangular cross-section beam
was carried out by K. Federhofer [5]. More recent development of the lateral
buckling problem of beams can be found in [6-9] and references therein. In [9],
one-dimensional theories of beams were derived from a three-dimensional theory
of elasticity by way of the principle of minimum potential energy. The various
cases analyzed in that publication to study the effect of finite deformation with
or without warping stiffness all assumed the cantilever is rigid with respect to
transverse shear deformation. The present paper complements [9] by studying
the impact of non-vanishing transverse shear strains (including nonlinear terms)
on the critical load for lateral buckling of cantilevers. For the special case of the
vanishing warping deformation, it is found that the nonlinear terms in transverse
shear strains and pre-buckling deformation effects should be retained as long as
transverse shear deformation is important.

2. Variationally Derived Equations for Cantilevers

Similar to the approach of [9], a set of one-dimensional differential equations
governing finite deformations of prismatic elastic bodies is derived from three-
dimensional theory of elasticity through the use of the variational equation

(2 .1)

where the usual Young’s modulus E and shear modulus G are known functions of
the cross-sectional coordinates x and y. In adopting the particular variational
functional (2.1) as the appropriate strain energy of the prismatic body, it is
tacitly assumed that the other three strain components of the elastic body are
either negligibly small or identically zero for the class of problems of interest.
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The three non-vanishing strain components ∈z , γx  a n d  γy are defined in
terms of the axial displacement component in the direction of the axial co-
ordinate z along the length of the prismatic body and the two cross-sectional
displacement components and in the direction of x and y, respectively. For
lateral deformation and buckling of cantilevers, we take the following to be the
approximate strain-displacement relations

(2.2)

(2.3)

where the displacement components are approximated by

(2.4)

(2. 5)

with w,  u,  v, α , β , θ a n d λ being functions of z only and the Saint-Venant
warping function ψ being a function of x and y only. Analogous to [9], we use
the constant parameter η to allow for the inclusion or exclusion of the relevant
nonlinear terms in the approximate displacement expressions. In [9], it was
assumed that the prismatic body under consideration is rigid with respect to
transverse shear with the conditions γ x  = γ y = 0 incorporated in the variational
equations as constraints through the Lagrange multipliers Qx  and Q y (with the
quantity replaced by

. The multipliers Q x  and Q y  have the interpretation of transverse
force over the cross section of the prismatic body.

In this paper, we allow for transverse shear deformations so that there are
no constraints in the extremization of the energy functional. With the effect
of warping already studied extensively in [9], we will be concerned here mainly
with a study of the effect of transverse shear deformability, with the nonlinear
terms in γx  and γ y and with the pre-buckling deformations since their effects
on the buckling load of prismatic bodies were not previously treated anywhere.

With the only non-vanishing stress-strain relations

(2. 6)

giving the three non-vanishing stress components, the Euler differential equa-
tions of (2.1) are the following seven one-dimensional differential equations of
equilibrium:

(2 .7)

(2 .8)

(2 .9)
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where

a n d

(2.10)

where ( )' = d ( )/dz and where the resultant force and moment quantities in
these equations are defined by the relations

(2.11)

(2.12)

When the x–axis and y–axis are axes of geometrical an material symmetry of
the cross section (so that etc.), we have
the following one-dimensional constitutive relations for these resultant quantities

(see[6]):
(2.13)

(2.14)

(2.15)

(2.16)

(2.17)

(2.18)

(2.19)

(2.20)

(2.21a)

(2.21b)

Note that the relations (2.7)-(2.10) and (2.13)-(2.20) are exact consequences
of (2.1) - (2.5) while some higher order nonlinear terms in the displacement
variables have been neglected in the corresponding relations in [9]. As to be
seen later in section 6, at least one term in (2.10), (–θv' My ), which appears to
be small of higher order, will actually contribute significantly to the buckling
load not anticipated in [7, 9].

At the clamped end of the cantilever, z = L, we have the no displacement
conditions of

(2.22)
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At the loaded end, z =0, the Euler boundary conditions require

(2.23)

3. Equations for Buckling

For buckling of the prismatic body due to a lateral end force in the y direction
(Fz  = F x  = 0, F y = P ), the non-vanishing stress and displacement measures of
the corresponding pre-buckled state are given by

Qy = P , My = P z (3. 1)

and

(3. 2)

From (3.2) and the end conditions we obtain

(3.3)

The corresponding (linearized) buckling equations are

(3. 4)

where

(3. 5)

Note that terms involving pre-buckling deformations are retained in (3.4) while
they were neglected in [9]. Though the influence of pre-buckling displacement
was analyzed in [7], it was for the case of no transverse shear deformation and
the simple linear relations u' = –α and v' = – β . The first equation of (3.4)
may be integrated once immediately to obtain

(3. 6)

where the relevant boundary condition in (2.33) (with Fx  = 0) has been used to
determine the constant of integration. With (3.6), the second equation of (3.4)
may be written as

(3. 7)

Upon substituting (3.5) into (3.4),we obtain an eighth order system of dif-
ferential equations for the four displacement measures u , θ ,α, and λ :
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(3.8)

where we have used (3.7) instead of the second equation of (3.4). The eighth
order system (3.8) is supplemented by the eight buckling boundary conditions:

(3.9a)

(3.9b)

The homogeneous boundary value problem defined by (3.8) and (3.9) constitutes
an eigenvalue problem with the buckling (end force) load P as the eigenvalue
parameter.

In addition to omitting terms involving pre-buckling deformations, the anal-
yses in [9] were limited to the special case Γ x  = Γy  = 0, i.e., the cross section of
the prismatic body is rigid and does not allow transverse shear deformations. In
that case, we may eliminate u from the first three equations of (3.5) to obtain a
sixth order system for θ, α and λ . In this paper, we complement the study in [9]
by allowing for transverse shear deformations but not cross-sectional warping
so that ψ = 0. The latter restriction implies Aψ  = J = 0 and the eighth order
system (3.4) reduces to a sixth order system:

(3.10)

while the last differential equation in (3.8) is trivially satisfied. Note that terms
involving the pie-buckling displacement vp  in (3.8) were omitted in the buckling
analysis of [9]. We keep them in (3.8) to allow for an analysis of the effect of
these terms later.

4. Linear Transverse Shear Deformability

We wish to investigate first the effect of transverse shear deformability on the
buckling of cantilevers. For this purpose, we will omit terms involving the pre-
buckling displacement vp . In that case, the system (3.10) further reduces to

(4.1a)

(4.1b , c)

The fifth order system (4.1) is supplemented by the boundary conditions

(4. 2)
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For η = 0 so that Γx a n d Γy  are linearly related to the displacement measures,
(4.1) may be written as

(4. 3)

where T (0) = 0 has been used to determine the unknown constant in the second
equation in (4.3) after integration. The first equation is then used to eliminate
u' from the second equation to get

(4. 4)

The coupled system of (4.4) and the third equation in (4.3) may be further
reduced to a single equation for

To cast (4.5) in dimensionless form, we set

(4. 5)

(4.6)

In terms of these dimensionless quantities, (4.5) becomes

(4.7)

with . The second order differential equation (4.7) is supple-
mented by the two boundary conditions

(4 .8)

as previously noted in (4.2) with α• (0) = 0 corresponding to M x (0) = 0 (see
(3.5)). The parameter ∈G is of the order of Ea ² /GL², where a is a typical lineal
dimension of the cross-section of the cantilever. For a long prismatic body, we
have typically a² /L² << 1 and, with E /G not large compared to unity, we have
Ix / AG L² << 1. A perturbation solution of the eigenvalue problem (4.5) and
(4.6) is therefore appropriate.

Let

(4. 9)

We have from (4.7) and (4.8)

(4.10)

a n d
(4.11)
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Since (4.10) and (4.11) must be satisfied for all ∈G (<< 1), we must have

(4.12)

(4.13)

and
(4.14)

(4.15)

and so on.

The solution to the O (1) problem (4.12)-(4.13) is known to be

(n = 1, 2, 3, · · · ) (4.16)

where /2 is the nth zero of the relevant Bessel function:

(4.17)

wi th ≅ 0.4013. Since, for any particular eigenvalue , the solution of the
O (1) problem given by (4.16) is also a solution of the homogeneous differential
equation corresponding to (4.14), we must satisfy the solvability condition

(4.18)

in order for the O (∈G ) problem (4.14)-(4.15) to have a solution. The condition
(4.17) determines σ 1 to be

(4.19)

From the results for the weighted integrals of I – 1 / 4 (t) (with weight t n) obtained
in [7], we have

(4.20)

Thus, the buckling load (corresponding to the lowest eigenvalue  of the
linear transverse shear strain model is given by

(4.21)

The O (∈G ) correction term is not insignificant for a cantilever aspect ratio of
1/10.



www.manaraa.com

350

The results of this section are identical to those obtained in [7], as they
should, since the latter study worked with the same set of govering differential
equations as (4.3). We reproduce the analysis and results here for subsequent
comparisons with those for η = 1 and those for a model which includes the
influence of pre-buckling deformations. The analysis of this section also allows
us to omit the details of subsequent calculations for the new studies with η = 1.

5. Non-Linear Transverse Shear Deformability

For η = 1 so that Γ x  and Γy  are nonlinear in the displacement measures, (4.1)
may be written as

(5. 1)

where M x (0) = 0 has been used to determine the unknown constant in the
second equation in (5.1) after integration. The first equation is then used to
eliminate u from the third equation to get

(5. 2)

The coupled system of (5.2) and the second equation in (5.1) may be further
reduced to a single equation for

(5. 3)

In terms of the dimensionless quantities in (4.6), equation (5.3) becomes

(5. 4)

with ( )• = d ( )/dζ . The second order differential equation (5.4) is supple-
mented by the two boundary conditions

(5. 6)

as previously noted in (4.2) with θ• (0) = 0 corresponding to T (0) = 0. When-
ever E /G is not large compared to unity, we have for a long prismatic body
∈G = I x /AG L² << 1. A perturbation solution of the eigenvalue problem (5.4)
and (5.5), denoted by is again appropriate.

With the help of the parametric expansions

(5. 7)

we have the following sequence of simpler eigenvalue problems for
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The O( ∈G ) Problem:

(5.9)
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(5.8)

and so on.

The solution of the O(1) problem is again

( n = 1,2, ···) (5.10)

where is the n th zero of For buckling, we are interested in

the lowest eigenvalue so that 4.013. Similar to the linear transverse
shear strain model, is also the solution for the homogeneous ODE corre-
sponding to (5.9) for . For the inhomogeneous ODE (5.9) to have a
solution, must be chosen to satisfy the conventional solvability condition:

(5.11)

(5.12)

(5.13)

(5.14)

(5.15)

or

With

we may re-write (5.12) as

It follows from the results of [7] that
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We have then the following perturbation solution for the buckling load of the
nonlinear transverse shear strain model:

(5.16)

Thus, when nonlinear terms are included in the strain-displacement relations
for the transverse shearing strains, the O (∈ G ) correction to the Michell-Prandtl
solution for the buckling load is twice the value when the nonlinear terms are not
included. For relatively long, homogeneous, isotropic, elastic prismatic bodies
with a / L = 1/10, the correction term is now about 15% of the Michell-Prandtl
solution.

6. The Effect of Pre-Buckling Deformations

In this section, we analyze the effect of pre-buckling deformations in the non-
linear transverse shear strain model for prismatic bodies without warping. For
this case, the system (3.10) with η = 1 applies. Upon integrating the first two
equations of (3.10) and oberving the relevant boundary conditions in (3.9), we
obtain

( 6 . la ,b)

(6.1c)

We now use the first and second equation of (6.1) to eliminate u' and α '
from the third leaving us with a single second order differential equation for θ:

(6.2)

where v'p is as given in (3.3). This second order differential equation is supple-
mented by the boundary conditions θ '(0) = θ ( L) = 0. Equation (6.2) can be
written in dimensionless form with the help of the dimensionless quantities in
(4.6) and

(6.3)

The primary unknown θ is therefore determined by the dimensionless differential
equation

(6.4)

subject to θ • (0) = θ (1) = 0.

By setting ∈G = 0, we recover the governing differential equation for can-
tilever buckling obtained in [7] when the prismatic bodies are known to be not
transverse shear deformable. By allowing for transverse shear deformability
while concurrently retaining terms involving pre-buckling displacement field vp

and its derivatives, we are able to make the following observations for the first
time:
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1 .

2 .

3 .

While the effect of terms involving pre-buckling displacement vp terms
may be O (1) or small of higher order depending on the aspect ratio of
the cantilevers cross section, ∈v , (whether it is O (1) or small by an order
of magnitude), the effect of the transverse shear defomrability is always
small of higher order for prismatic bodies as long as E and G are of the
same order of magnitude (including homogeneous and isotropic elastic
cantilevers) since we always have a / L < < 1 for prismatic bodies.

When the effect of transverse shear deformability is significant and should
be included in the model, then terms involving pre-buckling deformation
must also be retained for consistency since these contribute a term in the
final governing differential equation involving the effect of transverse shear
strains, namely, the last term in the coefficient of θ proportional to ∈G .

When we consider the effect of transverse shear deformability alone, there
is a significant difference between the correction to the Michell-Prandtl
buckling load given by the linear expression for the transverse shear strains
and that by the nonlinear relations. However, the additional contribution
from transverse shear deformability indirectly through terms involving
pre-buckling displacements has the effect of offsetting the contribution of
the nonlinear terms in the expressions for the transverse shear strains.

The validity of the first observation can be seen from the governing differ-
ential equation (6.4) for the problem. More specifically, we have from (6.3)
the order of magnitude relation for homogeneous,
isotropic, elastic prismatic bodies where a and b are the lineal dimension in
the x -direction and y -direction, respectively. The contribution of terms involv-
ing the pre-buckling displacement vp to (6.4) and the buckling load is small of
higher order only if the cantilever cross section has a small aspect ration so that
a 2/ b2  < < 1.

To demonstrate the necessity to retain terms involving pre-buckling deforma-
tion when the effect of transverse shear deformability is considered significant, it
suffices to limit our analysis to the case ∈v  < < 1.  The leading term solution for a
perturbation solution in ∈v , denoted by is determined by the eigenvalue
problem

(6.5)

(6.6)

Note that this problem differs from the one when terms involving the pre-
buckling displacement vp are neglected.

We now seek a regular perturbation solution of this problem in the second
small parameter ∈G . The leading term solution is again determined by (5.8) and
given by (5.10). Instead of (5.9), the O (∈G ) correction term is now determined
b y
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(6.7a)

(6.7b)

The differential equation in (6.7) differs from that of (5.9) by a term associ-
ated with the pre-buckling displacement vp even if the aspect ratio a / b is small
so that is negligible. This confirms the second observation above
indicating the necessity of retaining terms involving the pre-buckling displace-
ment v p whenever the effect of transverse shear strains on the buckling load is
significant.

Regarding the third observation above, we note that the solvability condition
for (6.7) now leads to the following expression for

(6.8)

The condition (6.8) is identical to the corresponding expression for the O(∈G)
correction term for σ l in (4.19) with n = 1 and in (4.20). Hence, for the first
two terms of a perturbation solution in ∈G without pre-buckling deformations,
the linear transverse shear strain model gives a accurate approximation for the
correction of the Michell-Prandtl buckling load than the nonlinear model, at
least in the case where the aspect ratio a /b is small so that i s
negligible.

7. On the Moment Equilibrium Equation (2.10)

We noted in section 2 that the seven equilibrium equations (2.7)-(2.10) are the
exact consequence of the assumed strain-displacement relations (2.2)-(2.5) and
the variational equation (2.1). In previous treatments of this lateral buckling
problem for cantilevers, third and higher order nonlinear terms in these equilib-
rium equations are neglected. In particular, the terms
are not included in the analysis of [7], [8] and [9]. While these terms appear
to be of higher order in the unknowns, , for example, leads to a term

in the last of the equilibrium equation for the buckled state in (3.4).
We see from (6.4) that this term contributes in a qualitatively significant way to
the coefficient of θ of the governing differential equation for the determination
of the buckling load. In fact, in the absence of the term, we would
have

(7 .1)

instead of (6.4). Thus, that portion of the effect of transverse shear deformation
on the buckling load through pre-buckling deformation would be lost. We saw
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in section 6 that this effect is comparable to that induced by transverse shear
deformability on the buckled state directly. For cases where

is not small by an order of magnitude, omitting the term
would change the buckling load significantly, not just a small perturbation since
the difference between the differential equation in (6.4) and (7.1) is

, which is whenever ∈v is O (1).

When the term is included, the method of reduction of the buck-
ling equations (3.10) and the relevant boundary conditions (3.9) for the linear
transverse shear strain model (corresponding to η = 0) to an eigenvalue problem
for a second order differential equation used effectively in [7] no longer applies.
It appears that we would have to work with an eigenvalue problem for a fourth
order system of two differential equations to determine the buckling load. In
contrast, the reduction to a second order differential equation is still possible as
shown in section 6 in the nonlinear transverse shear strain model corresponding
to the case η = 1. Since both the nonlinear transverse shear strain terms and
pie-buckling deformations contribute significantly to the buckling load when
transverse shear strain effects are important, there is no reason to pursue a
linear transverse shear strain model that includes pre-buckling deformations.

8. Concluding Remarks

The present study was intended to analyze the relevance or significance of
(i) the nonlinear terms in the strain-displacement relations for the transverse
shear strains, and (ii) the prebuckling deformation, on the buckling load of
cantilevers subject to a transverse end force when the effect of the transverse
shear deformations is sufficiently significant to necessitate a correction of the
Michell-Prandtl solution. It was found (in sections 4 and 5) that the nonlinear
terms in γ x  and γy contribute significantly to the buckling load in that they ef-
fectively double the magnitude of the correction to the Michell-Prandtl solution
whenever warping and pre-buckling deformation are neglected. However, it was
shown in section 6 that the the inclusion of terms involving the pre-buckling
displacement v p in the buckling analysis further modifies this correction term,
even if the aspect ratio of the cross section of the prismatic body is small so
that terms involving may be neglected in the governing differential
equation for the buckling problem. To order ∈G , the additional modification
resulting from the retention of v p terms is sufficiently substantial that it effec-
tively offsets the effects (on the buckling load) of the nonlinear terms in the
expressions for the transverse shear strains, at least for cases when the terms
involving are negligible.
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